python 线程池内存泄露_Python2.6的multiprocessing.dummy.Pool的一个内存泄露的问题

本文描述了一个在Python2.6环境中使用multiprocessing.dummy.Pool导致的内存泄漏问题。当Pool.map方法处理空列表时,会出现内存持续增长的现象。该问题在Python2.7和3.5版本中未复现。为检测内存泄漏,文章提供了通过`ps`和`top`命令监控进程内存使用情况的方法,以及编写脚本进行长期采样的建议。
摘要由CSDN通过智能技术生成

线上一个监控系统的agent内存单调增长 ,查了半天, 在我的开发环境的python2.7下重现不了,好不容易找了个老古董的RHEL6环境用python2.6才能重现.

Agent里面, 用multiprocessing.dummy.Pool开一个线程池, 然后通过map方法, 批量执行一批预先配置的任务, 测试发现用python2.6运行时, 如果某种任务一条也没配置的话, 就会有明显的内存泄露.

把重现的方法最简化如下面代码:

from multiprocessing import dummy

pool = dummy.Pool(8)

while True:

pool.map(str, [])

python2.6下跑稳定重现了内存泄露问题, python2.7, python3.5下跑都没问题.

如果pool.map里面传入的iterable不是一个空列表[]而是有元素的列表,则内存泄露不发生.

原因暂时没时间探究,但是知道了这个情况之后,就可以规避在Python2.6里面的泄露问题了.

下面说一下怎么判断一个进程是否内存泄露, 在Linux环境下, 找到你的进程号比如我的这个测试的:

# ps -ef|grep agent.py|grep -v grep

root 19512 19508 99 16:29 pts/0 00:09:57 python ./../src/agent.py

获得pid 19512

然后就top -p 19512, 观察常驻内存的量是否有异常上升

另外一种方式是

# grep RSS /proc/19512/status

VmRSS: 11772 kB

持续观察一段时间, 或者干脆写个脚本做长时间的定期采样, 有没有泄露就知道了.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值