点击蓝字就可以关 注
"
R语言与统计
"哦~~ 今天的内容小编只想说:加油!
在往期的文章里,介绍过单因素方差分析 [ R语言统计篇:单因素方差分析 ],今天介绍 双因素方差分析(Two-way ANOVA) 。 此方法用于检验两个分类变量(自变量)与一个连续变量(因变量)之间的关系。 比方说,如果一个分类变量有两个组别,另外一个分类变量有三个组别,那么一共就有2×3( = 6)个组别。根据各组之间的样本量是否相等,双因素方差分析又可分为 均衡设计(Balanced design)与 非均衡设计(Unbalanced design) 。 此篇文章会先介绍均衡设计,末尾再补上非均衡设计 。 与所有的方差分析一样,双因素方差分析的使用也需要满足 几个前提 :
此研究一共包含60只豚鼠,每只豚鼠通过两种给药方式( supp : OJ与VC)给予三种不同剂量的维生素C( dose : 0.5, 1, 2 mg/day)。 首先查看基本内容:

在往期的文章里,介绍过单因素方差分析 [ R语言统计篇:单因素方差分析 ],今天介绍 双因素方差分析(Two-way ANOVA) 。 此方法用于检验两个分类变量(自变量)与一个连续变量(因变量)之间的关系。 比方说,如果一个分类变量有两个组别,另外一个分类变量有三个组别,那么一共就有2×3( = 6)个组别。根据各组之间的样本量是否相等,双因素方差分析又可分为 均衡设计(Balanced design)与 非均衡设计(Unbalanced design) 。 此篇文章会先介绍均衡设计,末尾再补上非均衡设计 。 与所有的方差分析一样,双因素方差分析的使用也需要满足 几个前提 :
1. 残差需符合正态或接近正态分布。
2. 各组别的方差相同,即方差齐性。

1. 均衡设计的双因素方差分析(各组间样本量相等)
1.1 准备数据
今天使用到的数据是R自带的“ ToothGrowth” ,是研究维生素C对于豚鼠牙齿生长的影响。此研究一共包含60只豚鼠,每只豚鼠通过两种给药方式( supp : OJ与VC)给予三种不同剂量的维生素C( dose : 0.5, 1, 2 mg/day)。 首先查看基本内容:
summary(ToothGrowth)
## len supp dose
## Min. : 4.20 OJ:30 Min. :0.500
## 1st Qu.:13.07 VC:30 1st Qu.:0.500
## Median :19.25 Median :1.000
## Mean :18.81 Mean :1.167
## 3rd Qu.:25.27 3rd Qu.:2.000
## Max. :33.90 Max. :2.000
再查看数据结构:
str(ToothGrowth)
#'data.frame': 60 obs. of 3 variables:
# $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
# $ supp: Factor w/ 2 levels "OJ","VC": 2 2 2 2 2 2 2 2 2 2 ...
# $ dose: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5