python编写递归函数_[ python ] 递归函数

本文详细介绍了Python中的递归函数,包括其定义、特性、工作流程,并通过加法运算、实现三级菜单和二分查找算法的递归实现进行举例说明。递归函数在解决某些问题时能保持清晰的逻辑,但需要注意效率和避免溢出。最后讨论了递归函数优化技巧,例如在斐波那契数列问题上的改进。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

递归函数

描述:

如果一个函数在内部调用自身本身,这个函数就是递归函数

递归函数特性:

(1)必须有一个明确的结束条件

(2)每次进入更深一层递归时,问题规模相比上次递归都应有所减少

(3)相邻两次重复之间有紧密的联系,前一次要为后一次做准备

(4)递归效率不高,递归层次过多会导致溢出

首先,我们可以从字面上来理解递归函数

递:传递出去的意思

归:回来的意思

递归函数就是一个有去有回的过程,以下一个简单的例子来解释递归函数:

实例:

计算一个10以下(包括10)整数的加法运算:

(1)初级写法:

n = 0

for i in range(11):

n += i

print(n)

(2)中级写法:

使用 reduce 高阶函数进行累计运算

from functools import reduce

print(reduce(lambda x, y: x+y, range(11)))

(3)递归函数的写法:

def add(n):

if n == 1:

return n

else:

return n + add(n -1)

print(add(10))

这三种方法,显然第二种是最简单的,但是这里是为了研究递归函数的用法,要了解递归函数的工作流程,就需要分解递归函数。

这里只是为了说明问题,调用 add(5) :

def add(n): # n = 5

if n == 1:

return n

else:

return n + add(n -1) # 5 + add(5 -1)

def add(n): # add(4)

if n == 1:

return n

else:

return n + add(n -1) # 4 + add(4 -1)

def add(n): # add(3)

if n == 1:

return n

else:

return n + add(n -1) # 3 + add(3 -1)

def add(n): # add(2)

if n == 1:

return n

else:

return n + add(n -1) # 2 + add(2 -1)

def add(n): # add(1)

if n == 1: # n = 1

return n # return 1

else:

return n + add(n -1)

以上是我们通过代码执行流程分解出来的过程信息。

每当函数内部调用自身的时候,外部函数挂起,执行内部函数,当内部函数执行完毕,然后在执行外部函数;

用简单的图形来表示,如下:

===> add(5)

===> 5 + add(4)

===> 5 + (4 + add(3))

===> 5 + (4 + (3 + add(2)))

===> 5 + (4 + (3 + (2 + add(1))))

===> 5 + (4 + (3 + (2 + 1)))

===> 5 + (4 + (3 + 3))

===> 5 + (4 + 6)

===> 5 + 10

===> 15

递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。

实例:

使用递归函数实现一个三级菜单的效果

ContractedBlock.gif

ExpandedBlockStart.gif

menu ={'北京': {'海淀': {'五道口': {'soho': {},'网易': {},'google': {}

},'中关村': {'爱奇艺': {},'汽车之家': {},'youku': {},

},'上地': {'百度': {},

},

},'昌平': {'沙河': {'北航': {},

},'天通苑': {},'回龙观': {},

},'朝阳': {},'东城': {},

},'上海': {'闵行': {"人民广场": {'炸鸡店': {}

}

},'闸北': {'火车战': {'携程': {}

}

},'浦东': {},

},'山东': {},

}

三级菜单

提示:在编写递归函数的时候要牢记以下三点:

(1)必须有一个明确的结束条件

(2)当数据按照一定规律执行的时候,才能考虑递归实现

(3)只有调用自身的函数才是递归函数

ContractedBlock.gif

ExpandedBlockStart.gif

deftreeML(dic):whileTrue:for i indic:print(i)

key= input('>>>').strip()if key == 'q' or key == 'b':returnkeyelif key indic:

res=treeML(dic[key])if res == 'q':return 'q'treeML(menu)

递归函数实现三级菜单

二分查找算法与递归函数

二分查找算法:

简单来讲,就是一半一半的找。

二份查找实例:

有这样一个数列:

1,2,3,4,5

当我们想要查找数字:4

原始的办法:

从数列中一个一个遍历,直到找到 4 为止,查找了 4 次。

二分查找算法:

首先切一半得到:3,因为 3< 4 我们获取右半边的数列 4, 5

然后我们在切一半得到:4,4=4,在二分算法中,我们一共就找了 2 次就得到结果。

828019-20181010112813870-321871127.png

当我们想的多了,总结出更加便捷的方式,计算机才能更加高效的工作;

现在通过递归函数来实现,二分查找算法:

数列:

l = [2,3,5,10,15,16,18,22,26,30,32,35,41,42,43,55,56,66,67,69,72,76,82,83,88]

查找序列中是否有数字:83

l = [2,3,5,10,15,16,18,22,26,30,32,35,41,42,43,55,56,66,67,69,72,76,82,83,88]

基础实现:

def find(l, aim):

mid_index = len(l) // 2 # 这里需要取整数不能是小数

if l[mid_index] > aim: # 当取的值大于要找的值,取左边

find(l[:mid_index], aim) # 通过切片取list左边的值

elif l[mid_index] < aim: # 当取的值大于要找的值,取右边

find(l[mid_index+1:], aim) # 通过切片取list右边的值

else:

print(mid_index, l[mid_index]) # 数字比较只有三种情况,大于、小于、等于

find(l, 82)

上面的实例,虽然找到序列中含有 82 但是 索引位置是有问题的。修改如下:

l = [2,3,5,10,15,16,18,22,26,30,32,35,41,42,43,55,56,66,67,69,72,76,82,83,88]

def find(l, aim, start=None, end=None):

start = start if start else 0

end = len(l) -1 if end is None else end

mid_index = (end - start) // 2 + start

if start > end:

return None

if l[mid_index] > aim:

return find(l, aim, start, mid_index-1)

elif l[mid_index] < aim:

return find(l, aim, mid_index+1, end)

elif l[mid_index] == aim:

return mid_index, l[mid_index]

res = find(l, 82)

print(res)

# 执行结果:

# (22, 82)

以上递归函数,比较疑惑的地方:

end = len(l)-1 if end is None else end

这里为什么:len(l)-1

分析结果如下:

提示:如果要对递归函数进行分析,需要将代码执行流程分解开,查看就更加明显了。

l = [2,3,5]

def find(l, aim, start=None, end=None):

start = start if start else 0 # start = 0

end = len(l) if end is None else end # end = 3

mid_index = (end - start) // 2 + start # mid_index = (3-0) // 2 + 0 =1

if start > end:

return None

if l[mid_index] > aim:

return find(l, aim, start, mid_index-1)

elif l[mid_index] < aim: # 3 < 100

return find(l, aim, mid_index+1, end) # find(l, 6, 2, 3)

elif l[mid_index] == aim:

return mid_index, l[mid_index]

--------------------------------------------------------------------------------------------

通过第一步我们获取到:

find(l, 6, start=2, end=3)

l最大的索引为:2

--------------------------------------------------------------------------------------------

def find(l, aim, start=None, end=None): # find(l, 6, 2, 3)

start = start if start else 0 # start = 2

end = len(l) if end is None else end # end = 3

mid_index = (end - start) // 2 + start # mid_index = (3-2) // 2 + 2 =2

if start > end:

return None

if l[mid_index] > aim:

return find(l, aim, start, mid_index-1)

elif l[mid_index] < aim: # 5 < 6

return find(l, aim, mid_index+1, end) # find(l, 6, 3, 3)

elif l[mid_index] == aim:

return mid_index, l[mid_index]

--------------------------------------------------------------------------------------------

通过第二步我们获取到:

find(l, 6, start=3, end=3)

l最大的索引为:2

--------------------------------------------------------------------------------------------

def find(l, aim, start=None, end=None): # find(l, 6, 3, 3)

start = start if start else 0 # start = 3

end = len(l)-1 if end is None else end # end = 3

mid_index = (end - start) // 2 + start # mid_index = (3-3) // 2 + 3 = 3

if start > end:

return None

if l[mid_index] > aim: # l 最大的索引为:2 这里:l[3] 报错啦,因此 end = len(l)-1 if end is None else end

return find(l, aim, start, mid_index-1)

elif l[mid_index] < aim:

return find(l, aim, mid_index+1, end) # find(l, 6, 3, 3)

elif l[mid_index] == aim:

return mid_index, l[mid_index]

附加题:

使用递归函数求斐波拉契数列.

首先斐波拉契数列如下:

1,1,2,3,5,8

规律:从第三位开始,后面的值是前面两个值的和

def fib(n):

if n == 1 or n == 2:

return 1

return fib(n -1) + fib(n -2)

上面的函数是按照斐波拉契数列规律写出来的,思路是没问题的,但是在函数内部调用两次自身函数,这样的效率非常慢。

因此在使用递归函数时,一定要注意在函数内部只能调用一个,否则严重影响执行效率

上面的递归函数修改如下:

count = 0

def fib(n, a=0, b=1):

# 每次递归获取全局变量count = 0

global count

# 在递归函数中,count = 1

count += 1

# 当 1 < n -1 时,进行函数的递归计算

if count < n-1:

return fib(n, b, a+b)

# 当 1 >= n -1 时,n = 2 或者 n =1 返回 a + b = 0 + 1 = 1

elif count >= n -1:

return a+b

f = fib(10)

print(f)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值