从另一个答案的时间开始,NumPy添加了numpy.partition和numpy.argpartition函数进行部分排序,允许您在O(arr.size)时间内执行此操作,或者如果需要,可以在O(arr.size n * log(n))中执行此操作按排序顺序排列的元素.
numpy.partition(arr,n)返回一个大小为arr的数组,其中第n个元素是数组排序时的元素.所有较小的元素都在该元素之前,所有更大的元素都在之后.
numpy.argpartition是numpy.partition,因为numpy.argsort是numpy.sort.
以下是如何使用这些函数来查找二维arr的最小n个元素的索引:
flat_indices = numpy.argpartition(arr.ravel(), n-1)[:n]
row_indices, col_indices = numpy.unravel_index(flat_indices, arr.shape)
如果你需要按顺序索引,那么row_indices [0]是最小元素的行而不是n个最小元素中的一个:
min_elements = arr[row_indices, col_indices]
min_elements_order = numpy.argsort(min_elements)
row_indices, col_indices = row_indices[min_elements_order], col_indices[min_elements_order]
1D案例更简单:
# Unordered:
indices = numpy.argpartition(arr, n-1)[:n]
# Extra code if you need the indices in order:
min_elements = arr[indices]
min_elements_order = numpy.argsort(min_elements)
ordered_indices = indices[min_elements_order]