假设我有一个嵌套字典“user-dict”,其结构为:
级别1:用户ID(长整型)
2级:类别(字符串)
三级:分类属性(浮点数、整数等)
例如,此字典的条目为:user_dict[12] = {
"Category 1": {"att_1": 1,
"att_2": "whatever"},
"Category 2": {"att_1": 23,
"att_2": "another"}}
“user-dict”中的每个项都具有相同的结构,“user-dict”包含大量项,我希望将这些项馈送到熊猫数据帧,并根据属性构造序列。在这种情况下,一个层次索引将是有用的。
具体来说,我的问题是是否存在一种方法来帮助数据框架构造函数理解系列应该根据字典中“级别3”的值构建?
如果我尝试以下方法:
df = pandas.DataFrame(users_summary)
“级别1”(用户ID)中的项目被视为列,这与我想要实现的相反(将用户ID作为索引)。
我知道我可以在迭代字典条目之后构造这个系列,但是如果有更直接的方法,这将非常有用。类似的问题是,是否可以从文件中列出的JSON对象构造熊猫数据帧。
最佳答案:
熊猫多索引由一个元组列表组成。因此,最自然的方法是重新调整输入dict的形状,使其键是与所需的多索引值相对应的元组。然后,您只需使用pd.DataFrame.from_dict构建数据帧,使用选项orient='index':user_dict = {12: {'Category 1': {'att_1': 1, 'att_2': 'whatever'},
'Category 2': {'att_1': 23, 'att_2': 'another'}},
15: {'Category 1': {'att_1': 10, 'att_2': 'foo'},
'Category 2': {'att_1': 30, 'att_2': 'bar'}}}
pd.DataFrame.from_dict({(i,j): user_dict[i][j]
for i in user_dict.keys()
for j in user_dict[i].keys()},
orient='index')
att_1 att_2
12 Category 1 1 whatever
Category 2 23 another
15 Category 1 10 foo
Category 2 30 bar
另一种方法是通过连接组件数据帧来构建数据帧:
user_ids = []
frames = []
for user_id, d in user_dict.iteritems():
user_ids.append(user_id)
frames.append(pd.DataFrame.from_dict(d, orient='index'))
pd.concat(frames, keys=user_ids)
att_1 att_2
12 Category 1 1 whatever
Category 2 23 another
15 Category 1 10 foo
Category 2 30 bar