python解析原理_深入浅出深度学习:原理剖析与python实践 PDF 下载

资料目录:

1 绪论 1

1.1 人工智能、机器学习与深度学习的关系 2

1.1.1 人工智能——机器推理 3

1.1.2 机器学习——数据驱动的科学 4

1.1.3 深度学习——大脑的仿真 7

1.2 深度学习的发展历程 7

1.3 深度学习技术概述 9

1.3.1 从低层到高层的特征抽象 10

1.3.2 让网络变得更深 12

1.3.3 自动特征提取 13

1.4 深度学习框架 14

2 Theano基础 18

2.1 符号变量 19

2.2 符号计算的抽象——符号计算图模型 22

2.3 函数 25

2.3.1 函数的定义 25

2.3.2 Logistic回归 26

2.3.3 函数的复制 28

2.4 条件表达式 30

2.5 循环 31

2.6 共享变量 38

2.7 配置 38

2.7.1 通过THEANO_FLAGS配置 39

2.7.2 通过.theanorc文件配置 40

2.8 常用的Debug技巧 41

2.9 小结 42

3 线性代数基础 43

3.1 标量、向量、矩阵和张量 43

3.2 矩阵初等变换 44

3.3 线性相关与向量空间 45

3.4 范数 46

3.4.1 向量范数 46

3.4.2 矩阵范数 49

3.5 特殊的矩阵与向量 52

3.6 特征值分解 53

3.7 奇异值分解 55

3.8 迹运算 56

3.9 样例:主成分分析 57

4 概率统计基础 61

4.1 样本空间与随机变量 62

4.2 概率分布与分布函数 62

4.3 一维随机变量 63

4.3.1 离散随机变量和分布律 63

4.3.2 连续随机变量和概率密度函数 64

4.4 多维随机变量 65

4.4.1 离散型二维随机变量和联合分布律 66

4.4.2 连续型二维随机变量和联合密度函数 66

4.5 边缘分布 67

4.6 条件分布与链式法则 68

4.6.1 条件概率 68

4.6.2 链式法则 70

4.7 多维随机变量的独立性分析 70

4.7.1 边缘独立 71

4.7.2 条件独立 71

4.8 数学期望、方差、协方差 72

4.8.1 数学期望 72

4.8.2 方差 73

4.8.3 协方差 73

4.8.4 协方差矩阵 75

4.9 信息论基础 78

4.9.1 信息熵 78

4.9.2 条件熵 80

4.9.3 互信息 81

4.9.4 交叉熵与相对熵 81

5 概率图模型 84

5.1 生成模型与判别模型 86

5.2 图论基础 87

5.2.1 图的结构 87

5.2.2 子图 88

5.2.3 路径、迹、环与拓扑排序 89

5.3 贝叶斯网络 93

5.3.1 因子分解 93

5.3.2 局部马尔科夫独立性断言 96

5.3.3 I-Map与因子分解 97

5.3.4 有效迹 101

5.3.5 D-分离与全局马尔科夫独立性 105

5.4 马尔科夫网络 106

5.4.1 势函数因子与参数化表示 106

5.4.2 马尔科夫独立性 108

5.5 变量消除 112

5.6 信念传播 113

5.6.1 聚类图 113

5.6.2 团树 117

5.6.3 由变量消除构建团树 121

5.7 MCMC采样 124

5.7.1 随机采样 124

5.7.2 随机过程与马尔科夫链 126

5.7.3 MCMC采样 129

5.7.4 Gibbs采样 131

5.8 参数学习 134

5.8.1 最大似然估计 134

5.8.2 期望最大化算法 135

5.9 小结 137

6 机器学习基础 140

6.1 线性模型 141

6.1.1 线性回归 141

6.1.2 Logistic回归 146

6.1.3 广义的线性模型 148

6.2 支持向量机 149

6.2.1 最优间隔分类器 150

6.2.2 对偶问题 153

6.2.3 核函数 154

6.3 朴素贝叶斯 158

6.4 树模型 160

6.4.1 特征选择 161

6.4.2 剪枝策略 163

6.5 聚类 164

6.5.1 距离度量 165

6.5.2 层次聚类 166

6.5.3 K-means聚类 169

6.5.4 谱聚类 170

7 数值计算与最优化 176

7.1 无约束极小值的最优化条件 176

7.2 梯度下降 178

7.2.1 传统更新策略 180

7.2.2 动量更新策略 182

7.2.3 改进的动量更新策略 183

7.2.4 自适应梯度策略 186

7.3 共轭梯度 187

7.4 牛顿法 191

7.5 拟牛顿法 193

7.5.1 拟牛顿条件 193

7.5.2 DFP算法 194

7.5.3 BFGS 195

7.5.4 L-BFGS 196

7.6 约束最优化条件 199

8 前馈神经网络 204

8.1 生物神经元结构 205

8.2 人工神经元结构 206

8.3 单层感知机 207

8.4 多层感知机 210

8.5 激活函数 214

8.5.1 激活函数的作用 215

8.5.2 常用的激活函数 217

9 反向传播与梯度消失 224

9.1 经验风险最小化 225

9.2 梯度计算 227

9.2.1 输出层梯度 227

9.2.2 隐藏层梯度 229

9.2.3 参数梯度 233

9.3 反向传播 234

9.4 深度学习训练的难点 235

9.4.1 欠拟合——梯度消失 236

9.4.2 过拟合 239

10 自编码器 242

10.1 自编码器 242

10.2 降噪自编码器 244

10.3 栈式自编码器 246

10.4 稀疏编码器 249

11 玻尔兹曼机 255

11.1 玻尔兹曼机 255

11.2 能量模型 258

11.2.1 能量函数 258

11.2.2 从能量函数到势函数 259

11.2.3 从势函数到概率分布 260

11.3 推断 261

11.3.1 边缘分布 262

11.3.2 条件分布 264

11.4 学习 267

11.4.1 最大似然估计 268

11.4.2 对比散度 271

11.5 应用:个性化推荐 273

11.5.1 个性化推荐概述 273

11.5.2 个性化推荐架构与算法 276

11.5.3 RBM与协同过滤 282

12 递归神经网络 288

12.1 Elman递归神经网络 289

12.2 时间反向传播 292

12.3 长短时记忆网络 296

12.4 结构递归神经网络 299

12.5 应用:语言模型 304

12.5.1 N元统计模型 305

12.5.2 基于递归网络的语言模型 309

参考文献: 312

13 卷积神经网络 314

13.1 卷积运算 315

13.2 网络结构 318

13.3 卷积层 320

13.4 池化层 325

13.5 应用:文本分类 329

微信扫码订阅
UP更新不错过~
关注
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
什么是PC服务器 服务器是指具有固定的地址,并为网络用户提供服务的节点,它是实现资源共享的重要 组成部分。作为网络的节点,服务器存储并处理网络上80%的数据和信息,因此也被称为 网络的灵魂。服务器可以分为两大类:一部分是IA(Intel Architecture)服务器,主要以Intel的CPU为主;另一部分是比IA服务器性能更高的机 器,如RISC/Unix服务器等。 PC服务器在IA的范围之内,可以看作是IA- 32(应用32位CPU的IA)服务器,是PC与服务器相结合的新产物。PC服务器在外型设计、 内部结构、基本配置、操作接口和操作方式,以及价格与高端PC相仿。这造就了PC服务 器在部件的搭配和选择的灵活性,且管理和维护更加方便。借助以上优势,在各种架构 的服务器相互竞争的环境下,PC服务器阵营始终不败并不断扩大。 PC服务器的分类 从应用领域来看,PC服务器大致可分为入门级应用、工作组级应用、部门级应用和企业 级应用四类。 (1)入门级应用PC服务器主要是针对基于Windows NT或NetWare网络操作系统的用户,可以充分满足办公室型的中小型网络用户的 文件共享、数据处理、Internet接入及简单数据库应用的需求。 (2)工作组级应用PC服务器是支持单CPU结构的应用服务器,可支持大容量的ECC内存和 增强服务器管理功能的SM总线,功能全面、 可管理性强、且易于维护,可以满足中小型网络用户的数据处理、文件共享、Internet 接入及简单数据库应用的需求。 (3)部门级应用PC服务器一般都是双CPU结构。集成了大量的监测及管理电路,具有全 面的服务器管理能力,可监测如温度、电压 、风扇、机箱等状态参数,结合标准服务器管理软件,使管理人员及时了解服务器的工 作状况。同时,大多数部门级应用PC服务器具 有优良的系统扩展性, 能够满足用户在业务量迅速增大时能够及时在线升级系统,充分保护了用户的投资。它 是企业网络中分散的 各基层数据采集单位与最高层的数据中心保持顺利连通的必要环节,可用于金融、邮电 等行业。 (4)企业级应用PC服务器是高档服务器,普遍采用二到四个CPU结构,拥有独立的双PC I通道和内存扩展板设计,具有高内存带宽, 大容量热插拔硬盘和热插拔电源,具有超强的数据处理能力。这类产品具有高度的容错 能力及优良的扩展性能,可作为替代传统小 型机的大型企业级网络的数据库服务器。企业级应用PC服务器适合运行在需要处理大量 数据、高处理速度和对可靠性要求极高的金 融、证券、交通、邮电、通信等行业。 下面以高端的PC服务器为例,分核心、存储、外部I/O和特性四部分简要介绍PC服务器的 技术。 一、核心 本文中所定义的核心为CPU、内存和芯片组三大块。PC服务器应用在各行各业,为了满足 不断增长的运算需求,现代高端的PC服务器普遍采用了双/多CPU的架构(SMP),内存和 芯片组也使用了特殊设计。 1、CPU-SMP PC服务器中的双/多CPU多以SMP形式出现。SMP(对称多处理)全称是Symmetrical Multi Processing,是一种广泛应用于服务器、图形工作站等高端运算领域的并行处理技术。 它使用两颗或多颗CPU同时进行工作,这种架构中,同时有多个CPU运行的单一复本,可 提高运算效率。一些对CPU要求较高的软件中,SMP架构性能凸现,大幅度领先于单CPU架 构。PC服务器普遍采用8路CPU的SMP架构,8路以上服务器大多采用大型机中的NUMA架构 。 SMP技术对CPU是有要求的:首先,CPU中必须有APIC(可编程中断控制器)单元,这也是 SMP技术的基本保证。CPU可以彼此发送中断信息完成信息交换,并可以相互进行协调控 制。除了CPU内置的APIC单元外,主板上还要安装一个I/O APIC以处理I/O设备引起的中断。这也是支持SMP的CPU价格昂贵的原因。其次用来组建S MP架构的CPU核心必须完全相同,且频率一致,否则无法点亮系统。下图为采用Xeon CPU的典型SMP架构。我们看到,4颗CPU使用一条3.2GB/s的总线与北桥芯片连接,北桥芯 片又和内存连接,所以每颗CPU分得了800MB/s的内存带宽。 " " "Xeon CPU的典型SMP架构" AMD的Opteron大家一定也不陌生,它也是一款服务器的CPU。由于其内部集成了内存控制 器,所以每颗CPU拥有了独立的内存通道,是一种高性能的SMP架构。在IBM、HP等厂商的 鼎力支持下,Opteron快速发展,并抢占了一部分Intel的市场,下图为4路Opteron的SM P架构。CPU之间用6.4GB/s的HT总线连接,每颗CPU可得到5.4GB/s的独立带宽,达到了比 Xeon架构更强的I/O能力。 " " " " "4路Op

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值