基于cart树的随机森林实现matlab,机器学习之随机森林——CART模型的PYTHON实现

#-*- coding: utf-8 -*-

# Random Forest Algorithm on Sonar Dataset

from random import seed

from random import randrange

from csv import reader

from math import sqrt

from math import log

# Load data file

def load_data(filename, ty): #导入csv文件

dataset = list()

with open(filename, 'r') as file:

if ty == 'csv':

readers = reader(file)

for row in readers:

if not row:

continue

dataset.append(row)

else:

while True: # txt文件

readers = file.readline()

if not readers:

break

pass

p_tmp = [float(i) for i in readers.split(',')]

dataset.append(p_tmp)

pass

### wine数据集默认类别标签在第一列,统一放入最后一列

length = len(dataset[0])-1

sets = []

for data in dataset:

temp = data[1: length]+ [data[0]]

sets.append(temp)

#### --------------------

return sets

# Convert string column to float

def str_column_to_float(dataset, column): #将数据集的第column列转换成float形式

for row in dataset:

row[column] = float(row[column]) #strip()返回移除字符串头尾指定的字符生成的新字符串。

# Convert string column to integer

def str_column_to_int(dataset, column): #将最后一列表示标签的值转换为Int类型0,1,...

class_values = [row[column] for row in dataset]

unique = set(class_values)

lookup = dict()

for i, value in enumerate(unique):

lookup[value] = i

for row in dataset:

row[column] = lookup[row[column]]

return lookup

# Split a dataset into k folds

def cross_validation_split(dataset, n_folds): #将数据集dataset分成n_flods份,每份包含len(dataset) / n_folds个值,每个值由dataset数据集的内容随机产生,每个值被使用一次

dataset_split = list()

fold_size = len(dataset) / n_folds

for i in range(n_folds):

fold = list() #每次循环fold清零,防止重复导入dataset_split

dataset_copy = list(dataset) #

while len(fold) < fold_size: #这里不能用if,if只是在第一次判断时起作用,while执行循环,直到条件不成立

index = randrange(len(dataset_copy))

fold.append(dataset_copy.pop(index)) #将对应索引index的内容从dataset_copy中导出,并将该内容从dataset_copy中删除。pop() 函数用于移除列表中的一个元素(默认最后一个元素),并且返回该元素的值。

dataset_split.append(fold)

return dataset_split #由dataset分割出的n_folds个数据构成的列表,为了用于交叉验证

# Calculate accuracy percentage

def accuracy_metric(actual, predicted): #导入实际值和预测值,计算精确度

correct = 0

for i in range(len(actual)):

if actual[i] == predicted[i]:

correct += 1

return correct / float(len(actual)) * 100.0

# Split a dataset based on an attribute and an attribute value #根据特征和特征值分割数据集

def test_split(index, value, dataset):

left, right = list(), list()

for row in dataset:

if row[index] < value:

left.append(row)

else:

right.append(row)

return left, right

# Calculate the Gini index for a split dataset

def gini_index(groups, class_values): #分类越准确,则gini越小

gini = 0.0

for class_value in class_values: #class_values =[0,1]

for group in groups: #groups=(left,right)

size = len(group)

if size == 0:

continue

proportion = [row[-1] for row in group].count(class_value) / float(size)

gini += (proportion * (1.0 - proportion))

return gini

# Select the best split point for a dataset #找出分割数据集的最优特征,得到最优的特征index,特征值row[index],以及分割完的数据groups(left,right)

def get_split(dataset, n_features):

class_values = list(set(row[-1] for row in dataset)) #class_values =[0,1]

b_index, b_value, b_score, b_groups = 999, 999, 999, None

features = list()

while len(features) < n_features:

index = randrange(1,len(dataset[0])) #往features添加n_features个特征(n_feature等于特征数的根号),特征索引从dataset中随机取

if index not in features:

features.append(index)

for index in features: #在n_features个特征中选出最优的特征索引,并没有遍历所有特征,从而保证了每课决策树的差异性

for row in dataset:

groups = test_split(index, row[index], dataset) #groups=(left,right);row[index]遍历每一行index索引下的特征值作为分类值value,找出最优的分类特征和特征值

gini = gini_index(groups, class_values)

if gini < b_score:

b_index, b_value, b_score, b_groups = index, row[index], gini, groups #最后得到最优的分类特征b_index,分类特征值b_value,分类结果b_groups。b_value为分错的代价成本。

#print b_score

return {'index':b_index, 'value':b_value, 'groups':b_groups}

# Create a terminal node value #输出group中出现次数较多的标签

def to_terminal(group):

outcomes = [row[-1] for row in group] #max()函数中,当key参数不为空时,就以key的函数对象为判断的标准;

return max(set(outcomes), key=outcomes.count) # 输出group中出现次数较多的标签

# Create child splits for a node or make terminal #创建子分割器,递归分类,直到分类结束

def split(node, max_depth, min_size, n_features, depth): #max_depth = 10,min_size = 1,n_features = int(sqrt(len(dataset[0])-1))

left, right = node['groups']

del(node['groups'])

# check for a no split

if not left or not right:

node['left'] = node['right'] = to_terminal(left + right)

return

# check for max depth

if depth >= max_depth:

node['left'], node['right'] = to_terminal(left), to_terminal(right)

return

# process left child

if len(left) <= min_size:

node['left'] = to_terminal(left)

else:

node['left'] = get_split(left, n_features) #node['left']是一个字典,形式为{'index':b_index, 'value':b_value, 'groups':b_groups},所以node是一个多层字典

split(node['left'], max_depth, min_size, n_features, depth+1) #递归,depth+1计算递归层数

# process right child

if len(right) <= min_size:

node['right'] = to_terminal(right)

else:

node['right'] = get_split(right, n_features)

split(node['right'], max_depth, min_size, n_features, depth+1)

# Build a decision tree

def build_tree(train, max_depth, min_size, n_features):

#root = get_split(dataset, n_features)

root = get_split(train, n_features)

split(root, max_depth, min_size, n_features, 1)

return root

# Make a prediction with a decision tree

def predict(node, row): #预测模型分类结果

if row[node['index']] < node['value']:

if isinstance(node['left'], dict): #isinstance是Python中的一个内建函数。是用来判断一个对象是否是一个已知的类型。

return predict(node['left'], row)

else:

return node['left']

else:

if isinstance(node['right'], dict):

return predict(node['right'], row)

else:

return node['right']

# Make a prediction with a list of bagged trees

def bagging_predict(trees, row):

predictions = [predict(tree, row) for tree in trees] #使用多个决策树trees对测试集test的第row行进行预测,再使用简单投票法判断出该行所属分类

return max(set(predictions), key=predictions.count)

# Create a random subsample from the dataset with replacement

def subsample(dataset, ratio): #创建数据集的随机子样本

sample = list()

n_sample = round(len(dataset) * ratio) #round() 方法返回浮点数x的四舍五入值。

while len(sample) < n_sample:

index = randrange(len(dataset)) #有放回的随机采样,有一些样本被重复采样,从而在训练集中多次出现,有的则从未在训练集中出现,此则自助采样法。从而保证每棵决策树训练集的差异性

sample.append(dataset[index])

return sample

# Random Forest Algorithm

def random_forest(train, test, max_depth, min_size, sample_size, n_trees, n_features):

trees = list()

for i in range(n_trees): #n_trees表示决策树的数量

sample = subsample(train, sample_size) #随机采样保证了每棵决策树训练集的差异性

tree = build_tree(sample, max_depth, min_size, n_features) #建立一个决策树

trees.append(tree)

predictions = [bagging_predict(trees, row) for row in test]

return(predictions)

# Evaluate an algorithm using a cross validation split

def evaluate_algorithm(dataset, algorithm, n_folds, *args): #评估算法性能,返回模型得分

folds = cross_validation_split(dataset, n_folds)

scores = list()

for fold in folds: #每次循环从folds从取出一个fold作为测试集,其余作为训练集,遍历整个folds,实现交叉验证

train_set = list(folds)

train_set.remove(fold)

train_set = sum(train_set, []) #将多个fold列表组合成一个train_set列表

test_set = list()

for row in fold: #fold表示从原始数据集dataset提取出来的测试集

row_copy = list(row)

# row_copy[-1] = None

test_set.append(row_copy)

predicted = algorithm(train_set, test_set, *args)

actual = [row[-1] for row in fold]

accuracy = accuracy_metric(actual, predicted)

scores.append(accuracy)

return scores

# Test the random forest algorithm

seed(1) #每一次执行本文件时都能产生同一个随机数

# load and prepare data

filename = 'wine.txt'

dataset = load_data(filename, 'txt')

# convert string attributes to integers

for i in range(0, len(dataset[0])-1):

str_column_to_float(dataset, i)

# convert class column to integers

#str_column_to_int(dataset, len(dataset[0])-1) ##将最后一列表示标签的值转换为Int类型0,1(可以不用转换,标签可以为str型)

n_folds = 2 #分成5份数据,进行交叉验证

max_depth = 4 #决策树最大深度,不能太深,不然容易导致过拟合

min_size = 1 # 最小深度

sample_size = 0.5 # 每次生成决策树所用子数据集占总数据比重

n_features = int(sqrt(len(dataset[0])-1)) # 每棵决策树的最大特征数

for n_trees in [1,5,10]: #树的数量的选择并非越多越好,得自己调

scores = evaluate_algorithm(dataset, random_forest, n_folds, max_depth, min_size, sample_size, n_trees, n_features)

print('Trees: %d' % n_trees)

print('Scores: %s' % scores)

print('Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores))))

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 以下是基于CART决策随机森林回归算法的MATLAB代码示例: ``` % 导入数据 data = load('data.csv'); X = data(:, 1:end-1); Y = data(:, end); % 设置随机森林参数 ntrees = 50; % 的个数 mtry = size(X, 2); % 每个决策使用的特征数 options = statset('UseParallel',true); % 并行计算 % 训练随机森林模型 rf_model = TreeBagger(ntrees, X, Y, 'Method', 'regression', 'OOBVarImp', 'on', 'MinLeafSize', 5, 'MaxNumSplits', 100, 'NumPredictorsToSample', mtry, 'Options', options); % 预测 X_new = [1, 2, 3, 4, 5]; % 新样本 Y_pred = predict(rf_model, X_new); disp(Y_pred); ``` 解释一下代码: 1. 首先导入数据,其中`data.csv`是包含特征和目标变量的CSV文件; 2. 然后设置随机森林的参数,包括的个数、每个决策使用的特征数等; 3. 接着使用`TreeBagger`函数训练随机森林模型,其中`Method`设置为`regression`表示回归问题,`OOBVarImp`表示计算变量重要性(即特征重要性),`MinLeafSize`和`MaxNumSplits`分别表示每个叶节点的最小样本数和每个节点的最大分裂次数,`NumPredictorsToSample`表示每个决策随机选择的特征数; 4. 最后使用`predict`函数对新样本进行预测。 需要注意的是,随机森林的训练时间可能比较长,可以使用`UseParallel`选项开启并行计算以加快训练速度。另外,还可以使用交叉验证等方法调整模型参数以提高预测性能。 ### 回答2: 随机森林是一种集成学习算法,它通过构建多棵决策进行预测并最终综合结果,具有较好的泛化能力和鲁棒性。下面是基于CART决策随机森林回归算法的MATLAB代码实现: ```matlab % 加载数据 load dataset.mat % 设置参数 numTrees = 10; % 设置决策数量 numFeatures = sqrt(size(X, 2)); % 设置每棵的特征数量 % 创建随机森林 forest = cell(numTrees, 1); % 构建随机森林 for i = 1:numTrees % 随机选择特征 selectedFeatures = randperm(size(X, 2), numFeatures); % 随机选择样本 selectedSamples = randperm(size(X, 1)); trainIdx = selectedSamples(1:floor(size(X, 1)/2)); valIdx = selectedSamples(floor(size(X, 1)/2)+1:end); % 构建决策 tree = fitrtree(X(trainIdx, selectedFeatures), Y(trainIdx)); % 存储决策 forest{i} = tree; % 验证模型 YVal = predict(tree, X(valIdx, selectedFeatures)); validationError(i) = mse(YVal, Y(valIdx)); end % 预测 YTest = zeros(size(X, 1), 1); for i = 1:numTrees YTest = YTest + predict(forest{i}, X(:, selectedFeatures)); end YTest = YTest / numTrees; % 计算均方误差 testError = mse(YTest, Y); % 绘制误差曲线 figure; plot(1:numTrees, validationError); xlabel('Number of Trees'); ylabel('Validation Error'); disp(['Test Error: ', num2str(testError)]); ``` 这段代码首先加载数据集,然后设置了随机森林的参数。接下来,通过循环构建了指定数量的决策,每棵在构建之前随机选择了一部分特征和样本。随后对每棵决策进行了验证,并且存储了每棵的验证误差。最后,通过将所有决策的预测结果进行平均,得到了最终的预测结果,并计算了测试误差。在代码末端,还绘制了随机森林模型的验证误差曲线。 ### 回答3: 对于基于CART决策随机森林回归算法的MATLAB代码,可以按照以下步骤实现: 1. 导入数据:首先,将训练数据集和测试数据集导入MATLAB环境中。确保数据集包含特征向量和目标变量。 2. 设置参数:设置随机森林模型的参数,包括决策数量、每棵的最大深度等。你可以根据需求和数据的复杂性来调整这些参数。 3. 训练模型:使用训练数据集来训练随机森林模型。在MATLAB中,可以使用TreeBagger函数来实现。具体的代码如下: ```matlab model = TreeBagger(numTrees, trainFeatures, trainLabels, 'Method', 'regression', 'MaxNumSplits', maxDepth); ``` 这里,numTrees是决策的数量,trainFeatures是训练数据的特征向量,trainLabels是目标变量。 4. 预测:使用训练好的模型对测试数据进行预测。代码如下所示: ```matlab predictedLabels = predict(model, testFeatures); ``` 这里,predictedLabels是模型对测试数据的预测结果。 5. 评估:使用指标(如均方根误差,R-squared等)来评估模型的性能。具体的评估方法可以根据需求进行选择。 完成以上步骤后,你将得到一个基于CART决策随机森林回归模型MATLAB代码实现。记住,这只是一个简单的示例,你还可以根据你的需求和数据的特点进行自定义和优化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值