我目前正在开发一个高性能的python 2.7项目,利用列表中的数千个元素.显然,每个操作都必须尽可能快地执行.
所以,我有两个列表:其中一个是唯一的任意数字列表,我们称之为A,另一个是一个以1开头并与第一个列表长度相同的线性列表,名为B,代表索引在A(从1开始)
像枚举一样,从1开始.
例如:
A = [500, 300, 400, 200, 100] # The order here is arbitrary, they can be any integers, but every integer can only exist once
B = [ 1, 2, 3, 4, 5] # This is fixed, starting from 1, with exactly as many elements as A
如果我有一个B元素(称为e_B)并且想要A中的相应元素,我可以简单地执行Correspon_e_A = A [e_B – 1].没问题.
但是现在我有一个庞大的随机,非唯一整数列表,我想知道A中整数的索引,以及B中相应的元素是什么.
我想我对第一个问题有一个合理的解决方案:
indices_of_existing = numpy.nonzero(numpy.in1d(random_list, A))[0]
这种方法有什么好处,就是不需要map()单个操作,numpy的in1d只返回一个像[True,True,False,True,…]这样的列表.使用nonzero()我可以得到在A中存在的random_list中元素的索引.完美,我认为.
但对于第二个问题,我很难过.
我尝试过类似的东西:
corresponding_e_B = map(lambda x: numpy.where(A==x)[0][0] + 1, random_list))
这正确地给了我索引,但它不是最优的,因为首先我需要一个map(),其次我需要一个lambda,最后numpy.where()在项目被发现之后不会停止(记住,A只有唯一元素),意味着它像我一样巨大的数据集可怕地扩展.
我看了一下bisect,但似乎bisect只适用于单个请求,而不是列表,这意味着我仍然必须使用map()并按元素构建我的列表(这很慢,不是吗?)
既然我对Python很陌生,我希望这里的任何人都有想法吗?也许是一个我还不知道的图书馆?
解决方法:
我认为建议您使用哈希表来代替numpy.in1d,它使用O(n log n)合并排序作为预处理步骤.
>>> A = [500, 300, 400, 200, 100]
>>> index = { k:i for i,k in enumerate(A, 1) }
>>> random_list = [200, 100, 50]
>>> [i for i,x in enumerate(random_list) if x in index]
[0, 1]
>>> map(index.get, random_list)
[4, 5, None]
>>> filter(None, map(index.get, random_list))
[4, 5]
这是Python 2,在Python 3中映射并过滤返回类似于生成器的对象,因此如果要将结果作为列表获取,则需要围绕过滤器的列表.
我试图尽可能地使用内置函数来将计算负担推到C端(假设你使用CPython).所有的名字都是预先解决的,所以它应该非常快.
通常,为了获得最佳性能,您可能需要考虑使用PyPy,这是一个使用JIT编译的很好的替代Python实现.
比较多种方法的基准从来都不是一个坏主意:
import sys
is_pypy = '__pypy__' in sys.builtin_module_names
import timeit
import random
if not is_pypy:
import numpy
import bisect
n = 10000
m = 10000
q = 100
A = set()
while len(A) < n: A.add(random.randint(0,2*n))
A = list(A)
queries = set()
while len(queries) < m: queries.add(random.randint(0,2*n))
queries = list(queries)
# these two solve question one (find indices of queries that exist in A)
if not is_pypy:
def fun11():
for _ in range(q):
numpy.nonzero(numpy.in1d(queries, A))[0]
def fun12():
index = set(A)
for _ in range(q):
[i for i,x in enumerate(queries) if x in index]
# these three solve question two (find according entries of B)
def fun21():
index = { k:i for i,k in enumerate(A, 1) }
for _ in range(q):
[index[i] for i in queries if i in index]
def fun22():
index = { k:i for i,k in enumerate(A, 1) }
for _ in range(q):
list(filter(None, map(index.get, queries)))
def findit(keys, values, key):
i = bisect.bisect(keys, key)
if i == len(keys) or keys[i] != key:
return None
return values[i]
def fun23():
keys, values = zip(*sorted((k,i) for i,k in enumerate(A,1)))
for _ in range(q):
list(filter(None, [findit(keys, values, x) for x in queries]))
if not is_pypy:
# note this does not filter out nonexisting elements
def fun24():
I = numpy.argsort(A)
ss = numpy.searchsorted
maxi = len(I)
for _ in range(q):
a = ss(A, queries, sorter=I)
I[a[a
tests = ("fun12", "fun21", "fun22", "fun23")
if not is_pypy: tests = ("fun11",) + tests + ("fun24",)
if is_pypy:
# warmup
for f in tests:
timeit.timeit("%s()" % f, setup = "from __main__ import %s" % f, number=20)
# actual timing
for f in tests:
print("%s: %.3f" % (f, timeit.timeit("%s()" % f, setup = "from __main__ import %s" % f, number=3)))
结果:
$python2 -V
Python 2.7.6
$python3 -V
Python 3.3.3
$pypy -V
Python 2.7.3 (87aa9de10f9ca71da9ab4a3d53e0ba176b67d086, Dec 04 2013, 12:50:47)
[PyPy 2.2.1 with GCC 4.8.2]
$python2 test.py
fun11: 1.016
fun12: 0.349
fun21: 0.302
fun22: 0.276
fun23: 2.432
fun24: 0.897
$python3 test.py
fun11: 0.973
fun12: 0.382
fun21: 0.423
fun22: 0.341
fun23: 3.650
fun24: 0.894
$pypy ~/tmp/test.py
fun12: 0.087
fun21: 0.073
fun22: 0.128
fun23: 1.131
您可以调整场景的n(大小A),m(random_list的大小)和q(查询的数量).令我惊讶的是,我尝试聪明并使用内置函数而不是list comps并没有得到回报,因为fun22并不比fun21快很多(Python 2只有10%左右,Python 3只有~25%,但差不多75在PyPy中慢了%).这里是一个过早优化的案例.我想差异是因为fun22在Python 2中为每个查询构建了一个不必要的临时列表.我们也看到二进制搜索非常糟糕(看看fun23).
标签:python,numpy,bisect,list