给一堆数据后怎么用r处理成正态分布_多元正态分布函数的理解

对于

维的多元正态分布
,其密度函数公式为:

当年学的时候只是强行记住了这个公式。但是协方差矩阵

怎么理解,归一化系数中
又是怎么来的,以及
的指数项为什么是
则一概不知。今天偶然遇到,发现可以从矩阵对角化的角度理解这个公式。

一元正态分布

回顾一下一元正态分布

的密度函数:

当存在多个互相独立的一元正态分布时,它们的联合概率密度函数为各自密度函数的乘积:

(3) 中 exp 的指数项可以写成如下的矩阵形式:

也就是:

,其中
为对角矩阵,对角线上的值为各个独立的一元正态分布的方差。而其行列式

故 (3) 可以转化为:

这正是 (1) 的形式。如果把各个一元正态分布组合起来,形成一个高维随机变量,这里的联合概率密度函数,就是该高维随机变量的概率密度函数。因此,对于各维独立的高维随机变量,公式 (1) 成立

协方差矩阵的对角化

上一节中用独立的多个一元正态分布,推导出了多元正态分布的概率密度函数。然而,当各个子分布并不独立时应该怎么办呢?这就要借助矩阵对角化了。

对一组观测数据

,其均值为

其协方差矩阵为:

如果数据的每个维度是相互独立的,则协方差矩阵为对角矩阵,反之则不是。而矩阵的特征向量可以构建一组基底,将数据映射到新的空间,在新的空间下,数据各个维度相互独立。

各列为
的特征向量(经过了归一化),
为对角矩阵,对角线上为
的特征值,则有:

多元正态分布

上一节引出了

的特征向量矩阵
,该矩阵各列构成一组基底,将原本不线性独立的维度变独立:

而且由于

是实对称矩阵,它的特征向量两两正交,即
,因此
本身是一个“旋转”矩阵。如下图所示,对于二维正态分布,其概率密度函数的等高线是椭圆,对数据施加了
定义的旋转后,椭圆的两个轴将和坐标轴平行。

d7eb8e75aa89bf985d153a01a3c1bdbd.png

想象一堆观测数据,它们堆成小山(高的地方密度大,低的地方密度小)。我们把所有数据经过同样的旋转变换后,这个小山的形状并不会发生变化。也就是说,旋转前后各数据点的概率密度不变。

而旋转后的数据各维度相互独立,正好符合本文第二节的结论,可以直接套用公式 (1)。

根据方差公式易知,在新的基底下,数据的各个维度的方差就是

的特征值
。因此可以用
替换公式 (1) 中的
。这里只推导 exp 指数部分:

对 (4) 两边取逆:

代入 (5) 即为

同时,根据 (4) 有:

,而
为标准正交基,其行列式为 1,故:

综上,多元正态分布的公式为:

插图代码

import 
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值