算法证明_干货|最小生成树-Kruskal(克鲁斯卡尔)算法+理解+证明;

Kruskal算法:最小生成树的理解与证明
本文详细介绍了Kruskal算法求解最小生成树的过程,通过避圈法选择最小权值的边,并提供了算法的正确性证明。文章以通俗易懂的方式解释了算法的每一步,并给出了应用场景,最后提到了实际问题中如何应用类似算法解决最短路径问题。

作者:岑国玉

链接:Manacher(马拉车)算法详解_牛客博客

来源:牛客网

关于最小生成树,我曾经理解过,然后上离散数学后又理解了一遍,所以就向想一下这个博客;主要是理解和证明;

首先我们什么提出最小生成树概念:设无向连通带权图G=<V,E,W>,T是G的一颗生成树,T的各边权之和称为T的权,记作W(T)。G的所有生成树中权最小的生成树称为G的最小生成树。

求最小生成树已经有许多种方法,这里介绍的是避圈法(Kruskal);

怎样找出最小生成树:

设n阶无向连通图带权图G=<V,E,W>有m条边,不妨设G中没有环(否则,可以将所有的环先删去),将m条边按权从小到大顺序排序,设e1,e2,e3…em;

取e1在T中,然后依次检查e1,e2,e3…em。若ej(j>=2)与已在T中的边不能构成回路,则取ej在T中,否则弃去ej。

算法停止时得到的T为G的最小生成树;下面这个第一张图片是G无向连通图;第二张图片是T,即G的最小生成树;

1c2af3ce584390bb5a88a9573e87f6fb.png

59acaef9621fea4c816d466ea547acab.png

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值