python 遗传算法_Python实现遗传算法的代码

本篇文章主要介绍了Python 遗传算法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

写在前面

之前的文章中已经讲过了遗传算法的基本流程,并且用MATLAB实现过一遍了。这一篇文章主要面对的人群是看过了我之前的文章,因此我就不再赘述遗传算法是什么以及基本的内容了,假设大家已经知道我是怎么写遗传算法的了。

Python的遗传算法主函数

我的思想是,创建一个染色体的类,其中包括了两个变量:染色体chrom与适应度fitness。因此我们就可以通过直接建立对象来作为种群中的个体。

#染色体的类

class Chrom:

chrom = []

fitness = 0

def showChrom(self):

print(self.chrom)

def showFitness(self):

print(self.fitness)

所以我们开始设置基础参数。其中种群的表达方式我用的是字典,也就是用一个字典来保存种群内的所有个体,这个也是我想出来的创建多个对象的方法。

将字典的索引为个体的标号,如:chrom1, chrom2等。字典索引的值就是一个对象。这个对象拥有两个属性,就是染色体与适应度。

其实在这一方便来说,我觉得在思路上是优于利用MATLAB的矩阵式编程的。因为这样可以很直观的将个体与个体的属性这一种思想给表达出来,相比一堆矩阵来说,在逻辑上比较容易接受。

#基础参数

N = 200 #种群内个体数目

mut = 0.2 #突变概率

acr = 0.2 #交叉概率

pop = {} #存储染色体的字典

for i in range(N):

pop['chrom'+str(i)] = Chrom()

chromNodes = 2 #染色体节点数(变量个数)

iterNum = 10000 #迭代次数

chromRange = [[0, 10], [0, 10]] #染色体范围

aveFitnessList = [] #平均适应度

bestFitnessList = [] #最优适应度

之后就是初始染色体了,其中就牵扯到了各种用来初始化种群、计算适应度、找最优等函数,我在这里分出了两个文件,分别为Genetic.py与Fitness.py。

Genetic.py里面有八个函数,主要包含了作用于种群或者染色体操作的函数,分别为:findBest函数,用于寻找种群中的最优染色体;

findworse函数,用于寻找种群中的最劣染色体;

initialize函数,用于初始化种群;

calAveFitness函数,用于计算种群的平均适应度;

mutChrom函数,用于对染色体进行变异;

inRange函数,用于判断染色体节点值是否越界;

acrChrom函数,用于对染色体进行交叉;

compareChrom函数,用于比较两个染色体孰优孰劣。

Fitness.py里面有两个函数,主要包含了对适应度操作的函数,分别为:calFitness函数,用来迭代每一个个体,并计算适应度(利用funcFitness函数计算);

funcFitness函数,计算单个个体的适应度。

因此可以列出初始化代码为

#初始染色体

pop = Genetic.initialize(pop, chromNodes, chromRange)

pop = Fitness.calFitness(pop) #计算适应度

bestChrom = Genetic.findBest(pop) #寻找最优染色体

bestFitnessList.append(bestChrom[1]) #将当前最优适应度压入列表中

aveFitnessList.append(Genetic.calAveFitness(pop, N)) #计算并存储平均适应度

迭代过程的思路和逻辑与MATLAB无异

#开始迭代

for t in range(iterNum):

#染色体突变

pop = Genetic.mutChrom(pop, mut, chromNodes, bestChrom, chromRange)

#染色体交换

pop = Genetic.acrChrom(pop, acr, chromNodes)

#寻找最优

nowBestChrom = Genetic.findBest(pop)

#比较前一个时间的最优和现在的最优

bestChrom = Genetic.compareChrom(nowBestChrom, bestChrom)

#寻找与替换最劣

worseChrom = Genetic.findWorse(pop)

pop[worseChrom[0]].chrom = pop[bestChrom[0]].chrom.copy()

pop[worseChrom[0]].fitness = pop[bestChrom[0]].fitness

#存储最优与平均

bestFitnessList.append(bestChrom[1])

aveFitnessList.append(Genetic.calAveFitness(pop, N))

最后再做一下迭代的的图像

plt.figure(1)

plt.plot(x, aveFitnessList)

plt.plot(x, bestFitnessList)

plt.show()

最后再在最前面加上各种库和文件就可以运行了。

import Genetic

import Fitness

import matplotlib.pyplot as plt

import numpy as np

感悟

可以说最主要的感悟就是染色体这一个类。其实那个Genetic.py与Fitness.py这两个文件也可以直接包装成类,但是这样一来我就嫌主文件太臃肿,在其他里面再包装成类又多此一举,毕竟这只是一个小程序,所以我就这样写了。

深刻感悟到了面向对象编程的优点,在编程逻辑的处理上真是一种享受,只需要思考对象的属性即可,省去了许多复杂的思考。

另一个感悟就是创建多个对象时,利用字典的方法来创建对象。当初我也是困惑怎么建立一个类似于C++中的对象数组,上网查找了各种方法,结果都避而不谈(当然,也可能是我搜索能力太差没找到),所以经过尝试中遇到到了这种方法。

等有空我再详细说一下这个方法吧,这一次就先到这里。

剩余的函数补充

首先是Genetic.py里面的八个函数

import random

#寻找最优染色体

def findBest(pop):

best = ['1', 0.0000001]

for i in pop:

if best[1] < pop[i].fitness:

best = [i, pop[i].fitness]

return best

#寻找最劣染色体

def findWorse(pop):

worse = ['1', 999999]

for i in pop:

if worse[1] > pop[i].fitness:

worse = [i, pop[i].fitness]

return worse

#赋初始值

def initialize(pop, chromNodes, chromRange):

for i in pop:

chromList = []

for j in range(chromNodes):

chromList.append(random.uniform(chromRange[j][0], chromRange[j][1]+1))

pop[i].chrom = chromList.copy()

return pop

#计算平均适应度

def calAveFitness(pop, N):

sumFitness = 0

for i in pop:

sumFitness = sumFitness + pop[i].fitness

aveFitness = sumFitness / N

return aveFitness

#进行突变

def mutChrom(pop, mut, chromNodes, bestChrom, chromRange):

for i in pop:

#如果随机数小于变异概率(即可以变异)

if mut > random.random():

mutNode = random.randrange(0,chromNodes)

mutRange = random.random() * (1-pop[i].fitness/bestChrom[1])**2

pop[i].chrom[mutNode] = pop[i].chrom[mutNode] * (1+mutRange)

#判断变异后的范围是否在要求范围内

pop[i].chrom[mutNode] = inRange(pop[i].chrom[mutNode], chromRange[mutNode])

return pop

#检验便宜范围是否在要求范围内

def inRange(mutNode, chromRange):

if chromRange[0] < mutNode < chromRange[1]:

return mutNode

elif mutNode-chromRange[0] > mutNode-chromRange[1]:

return chromRange[1]

else:

return chromRange[0]

#进行交叉

def acrChrom(pop, acr, chromNodes):

for i in pop:

for j in pop:

if acr > random.random():

acrNode = random.randrange(0, chromNodes)

#两个染色体节点进行交换

pop[i].chrom[acrNode], pop[j].chrom[acrNode] = pop[j].chrom[acrNode], pop[i].chrom[acrNode]

return pop

#进行比较

def compareChrom(nowbestChrom, bestChrom):

if bestChrom[1] > nowbestChrom[1]:

return bestChrom

else:

return nowbestChrom

然后是Fitness.py的两个函数

import math

def calFitness(pop):

for i in pop:

#计算每个染色体的适应度

pop[i].fitness = funcFitness(pop[i].chrom)

return pop

def funcFitness(chrom):

#适应度函数

fitness = math.sin(chrom[0])+math.cos(chrom[1])+0.1*(chrom[0]+chrom[1])

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
遗传算法是一种模拟自然进化过程的优化算法,主要用于解决复杂的优化问题。在遗传算法中,通过对个体(解)进行基因操作(交叉、变异等),不断地产生新的个体,并通过选择机制,筛选出适应度高的个体,从而逐步优化得到最优解。 下面是一个简单的遗传算法Python实现代码: ```python import random # 定义适应度函数 def fitness(individual): # 适应度函数为 x^2 的形式,其中 x 为个体的染色体长度 return sum([gene**2 for gene in individual]) # 初始化种群 def init_population(pop_size, gene_size): population = [] for i in range(pop_size): individual = [random.randint(0, 1) for j in range(gene_size)] population.append(individual) return population # 选择操作 def selection(population): # 轮盘赌选择 fitness_values = [fitness(individual) for individual in population] total_fitness = sum(fitness_values) probabilities = [fitness/total_fitness for fitness in fitness_values] selected_population = [] for i in range(len(population)): selected_individual = None while selected_individual is None: for j in range(len(population)): if random.random() < probabilities[j]: selected_individual = population[j] break selected_population.append(selected_individual) return selected_population # 交叉操作 def crossover(parent1, parent2, crossover_rate): # 一点交叉 if random.random() > crossover_rate: return parent1, parent2 crossover_point = random.randint(1, len(parent1)-1) child1 = parent1[:crossover_point] + parent2[crossover_point:] child2 = parent2[:crossover_point] + parent1[crossover_point:] return child1, child2 # 变异操作 def mutation(individual, mutation_rate): # 每个基因以 mutation_rate 的概率发生变异 for i in range(len(individual)): if random.random() < mutation_rate: individual[i] = 1 - individual[i] return individual # 遗传算法 def genetic_algorithm(pop_size, gene_size, max_generation, crossover_rate, mutation_rate): population = init_population(pop_size, gene_size) for i in range(max_generation): population = selection(population) new_population = [] while len(new_population) < pop_size: parent1, parent2 = random.sample(population, 2) child1, child2 = crossover(parent1, parent2, crossover_rate) child1 = mutation(child1, mutation_rate) child2 = mutation(child2, mutation_rate) new_population.append(child1) new_population.append(child2) population = new_population best_individual = min(population, key=lambda individual: fitness(individual)) return best_individual # 测试 best_individual = genetic_algorithm(pop_size=100, gene_size=10, max_generation=1000, crossover_rate=0.8, mutation_rate=0.1) print(best_individual, fitness(best_individual)) ``` 在上面的代码中,定义了适应度函数、初始化种群、选择、交叉、变异等操作,并通过遗传算法不断迭代,最终得到最优解。在测试中,我们设定种群大小为100,染色体长度为10,最大迭代次数为1000,交叉率为0.8,变异率为0.1,得到的最优解为[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],适应度函数的值为0。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值