矩阵化为行最简形矩阵计算器_矩阵的逆矩阵

86648a8498037020630a012dafcb69d7.png

在上一篇文章中我们介绍到矩阵的乘法不满足交换律,出于同样的原因,矩阵也不能够直接做除法,而我们在计算中却会经常遇到需要做除法的情况。

比如我们有这样一个等式:

这里Y和X是n维向量,A是n阶方阵。我们通过测量能够得到Y的值,而且也知道表示Y和X之间关系的矩阵A,想要得到X,怎么求出呢?显然我们不能够做

这样的除法,而在实际中我们又常常会遇到这种已知Y和A而需要求X的情况。这时我们就需要用求逆矩阵的方法。

求逆矩阵的方法基于单位矩阵的概念。假设一个n阶方阵,在其主对角线上的元素全为1,其余位置的元素全为0。

就是一个三阶的单位矩阵。单位矩阵(Identity Matrix)可以用E表示。任何方阵乘以同阶的单位矩阵的结果都为自身。比如:
,或用代数方法写成

从以上乘法中可以看出,单位矩阵E有些类似于代数乘法中的1,即任何数乘以1都等于它自身。那么,根据此思路,我们若能找出与A相乘等于E的矩阵来,

,就相当于找到了矩阵A的倒数了。

定义:对于矩阵A,如果存在

,使
,则称
为矩阵A的逆矩阵。

明确了逆矩阵的定义后,我们需要了解计算出逆矩阵的方法。下面介绍如何利用矩阵的初等变换来求逆矩阵的方法。

假设我们需要求A的逆矩阵,我们可以对矩阵A持续进行初等行变换的操作,直到将A转化成为单位矩阵E。与这些初等行变换操作同步进行的是对一个同阶单位矩阵E的初等行变换操作。也就是说,从第一步开始,都将对A的每一步初等行变换操作同时作用于E。这样,A不断变化的同时E也不断变化。当最终A转换为E的同时,对E的操作就将E转换为了A的逆矩阵。

上图中左侧一列矩阵是将A不断地变换成单位矩阵的过程。而右侧是将E做同步操作的过程,其结果就是A的逆矩阵

。化成单位矩阵的过程并不唯一,基本思路是先将第一列除第一行外的元素转化为0,再将第二列除第二行外的元素转化为0,最后操作第三列。

每一次进行行变换时需要对两侧的矩阵同时进行行变换,计算量不小且比较繁琐,需要非常细心。当然,一个更好的办法是使用计算机或计算器来计算逆矩阵:

2ac91c5e81f93985d89d941dca770d1e.png

最后,并不是所有矩阵都存在逆矩阵的。首先,要满足

,矩阵必须是一个方阵。其次,矩阵的行列式不能为0,这个问题在我们介绍矩阵的秩时会有更多的介绍。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值