外文原文
Autonomous Robot Path Planning Based on Swarm
Intelligence and Stream Functions
Chengyu Hu, Xiangning Wu, Qingzhong Liang, and Yongji Wang
Department of Control Science and Engineering,
Huazhong University of Science & Technology, Wuhan, China 430074
huchengyu@, wangyjch@
School of Computer, China University of Geosciences, Wuhan, China 430074
WXN000sun@126.com, qzliang@
Abstract. This paper addresses a new approach to navigate mobile robot in
static or dynamic surroundings based on particle swarm optimization (PSO) and
stream functions (or potential flows). Stream functions, which are introduced
from hydrodynamics, are employed to guide the autonomous robot to evade the
obstacles. PSO is applied to generate each optimal step from initial position to
the goal location; furthermore, it can solve the stagnation point problem that
exists in potential flows. The simulation results demonstrate that the approach is
flexible and effective.
1 Introduction
In the last few decades we have witnessed a rapidly increasing interest in mobile robot navigation and path planning, as it has a lot of applications such as assembly, manufacturing, transportation and services. The definition of robot path planning given by most researchers is typically formulated as follows: given a robot and description of an environment, plan a path from an initial location to the goal location, which is collision-free and satisfies optimization criteria [1]. The path planning problem could be divided into two sub-problems, one is to establish the surroundings model, generate path by some traditional approaches; the other is to avoid obstacle in the surroundings.
There are many traditional approaches to establish the surroundings model. According to the knowledge of the environments, the methods can be classified as local methods and global methods. Visibility graph [4], free space approach [5] and grids [6] are envisioned as global methods. Artificial potential field [8], neural network
639

被折叠的 条评论
为什么被折叠?



