两边同时取对数求复合函数_第十四讲 函数的求导法则

写在前面的话

这一讲主要是讲了基本初等函数及其反函数、复合函数的求导公式。这些公式需要反复记忆。

我在证明和解题过程中用到了一些之前的知识点,如果你印象不是很深刻了,还是回去好好理解一下,权当复习了。不知道哪位大师说过那么一句话:把书从从薄读到厚,再从厚读到薄。简言之就是反复。

对了,我觉得有必要说一下直接函数与其反函数的事儿:

04505f73cb78d7cca18126798b7e993b.png
图1

4ae08f4823fa3cd78ef1eebbd1377ccc.png
图2

上面两张图分别是

两个函数互为反函数:

两个函数都是单调的,否则,若一个函数不单调,另一个函数的函数值会出现自变量对应多个函数值的情况,这就不是一个函数了,所以一个函数必须单调才能保证具有反函数(如图3)。

② 上面两个函数的

具有相同的取值范围:
,其实它们是公用一套
域和
域的,只是映射条件互逆罢了。亦即,
两个函数的
是同一个东东。
所以再后面反函数的求导法则中,不必迷惑。

08ad5a96ba61895de89a5c3235e639dc.png
图3

③ 像图3这样

就不存在反函数,因为如果把
当作自变量,那么会出现同一个自变量对应两个“函数值”,所以要使函数有反函数,必须单调才行。

这也是为什么下面反函数的求导法则中强调直接函数是单调的了

好了,记住这三点,我们再反函数求导时就不要疑惑了,小伙伴们,我们共同学习吧~

有错误,还请指正,我会及时纠正。

一、函数的和、差、积、商的求导法则

定理1 如果函数

都在点
具有导数,那么它们的和、差、积、商(除分母为零的点外)都在点
具有导数,且有

证明: 式

其中,之所以

,是因为
可导
连续,极限值等于函数值(戳我了解)。

注:① 定理1的结论可简写为:

② 定理1中的式

可推广到任意有限个可导函数的情形,比如
均可导,则有

③ 在式

中,当
为常数)时,有

例1.

,求

解:

例2.

,求

解:

例3.

,求

解:

例4.

,求

解:

这正式正切函数的求导公式,可直接作为结论。

例5.

,求

解:

这是正割的求导公式,可作为结论。另外余切函数和余割函数的求导公式为

二、反函数的求导法则

定理2 如果函数

在区间
内单调、可导且
,则它的反函数
在对应的区间
内也可导且

证明:第①步:由于

在区间
上单调可导,故
上单调连续(可导
连续,戳我了解)。从而它的反函数
上单调连续(戳我了解)。

第②步:又因为当

时,
单调,所以
,即
。所以

第③步:又因为

连续,根据连续定义(戳我了解),当
时,
。所以

证毕。

简言之,反函数的导数等于直接函数导数的倒数。

例6.

为直接函数,则
是它的反函数。函数
在开区间
内单调、可导,且在该区间内导数为
(不等于
)。

因此,在对应区间

由反函数的导数为直接函数导数的倒数:
。这里要注意的是在区间
,所以能够保证
而非
,即
式在这里是成立的,不必有疑问。

结合式

有:
,此为反正弦函数的求导公式。

类似地,反余弦函数的导数公式:

例7.

是直接函数,
,则
是它的反函数,函数
内单调、可导,且在该区间内
,而
,所以

而反函数的导数为直接函数导数的倒数:

类似地,反余弦函数的表达式:

例8.

为直接函数,则
是它的反函数,函数
在区间
内单调、可导,且在该区间内
,在对应区间
内有
。这和十三讲中用定义求导,结果一致(戳我了解)。

三、复合函数的求导法则

至此,对于像

这样的符合函数,它们的求导法则又是如何呢?如下:

定理3 如果

在点
处可导,而
在点
处可导,则复合函数
在点
处可导,且导数为

证明:由于外层函数

处可导,所以
,由极限与无穷小的关系(戳我了解),

左右两边同时除以

对式

取极限:

时,
式等号右边导数
为常数,差商
的极限为导数
,而
,故
式又可写作:
,证毕。

简言之,如果里层函数在

点处可导,外层函数在相应的
处可导,那么复合函数在
处可导,且导数是外层函数在
处的导数值乘以里层函数在
处的导数值。

注:① 如果里层函数

在开区间
内可导,外层函数在开区间
可导,且里层函数的值域包含于外层函数的可导定义域内,即
,那么复合函数
在开区间
内可导且导数值为外层函数对中间变量
的导数与里层函数对自变量
的导数的乘积:

② 如果

,则复合函数
的导数为
。同样四重、五重
复合函数有类似的结论。

例9.

,求

解:

可以看作
复合而成,因此

例10.

,求

解:

可以看作
复合而成,因此

从上面例子可以看出,求复合函数的导数,首要任务是把复合函数分解成里层函数和外层函数,然后再根据复合函数的求导法则进行求导。不过对于已经熟练的同学可以不用再写出中间变量了,直接在心中知道就行。

例11.

,求

解:

例12.

,求

解:

例13.

,求

解:

可以分解为
,因此

例14.

,求

解:

例15.

,证明幂函数的求导公式为

证明:因为

,所以

例16.

为常数),求

解:

四、基本求导法则与导数公式总结

1.常数和基本初等函数的求导公式:

e35b50e944f2a6678176b599ee0e5cd0.png

2.函数的和差积商求导法则(见定理1)

3.反函数的求导法则(见定理2)

3.复合函数的求导法则(见定理3)


下面是与本讲内容无关的事情,不感兴趣可以自行忽略


最近有小伙伴催更了,哎~工作比较忙也没办法。所以跟不上大一同学的进度。请见谅,另外谢谢大家的认可。也有很多同学问了我一些题目,我有点应接不暇,毕竟工作第一嘛~先填饱肚子,才配谈理想,对吧。然后我想给爱学习的小伙伴们推荐一套同济第七版高数教辅,是同济大学数学系编的。课后习题答案很全,讲的也很细,希望有帮助。

有的小伙伴准备考研,在时间允许的情况下,比如大二大三的,可以先把课后习题做做,不要小瞧课本呦~基础的知识往往最能揭示本质的东西。

已标记关键词 清除标记
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页