rbf神经网络预测_城市轨道交通中短期客流预测的深度学习架构

8ef9cfadc2cbe7707567c6e92d4ac527.png

摘要:短期客流预测是城市轨道交通运营的重要组成部分。兴起的深度学习模型为提高预测精度提供了很好的思路。因此,我们提出了一种结合了残差网络(ResNet)、图卷积网络(GCN)和长短期记忆网络(LSTM)(简称ResLSTM)的深度学习架构来预测网络规模下的城市轨道交通短期客流。首先,改进了ResNet、GCN和注意力机制LSTM模型的方法。然后,提出了利用ResNet获取地铁车站间深度抽象空间相关性、用GCN提取网络拓扑信息、用注意力机制LSTM提取时间相关性的模型体系结构。模型结构包括输入流、输出流、图网拓扑、天气状况和空气质量四个分支。据我们所知,这是第一次将空气质量指标纳入预测范围,并量化其对预测精度的影响。最后,将ResLSTM应用于北京地铁,利用10、15、30分钟三次时间粒度进行短期客流预测。ResLSTM与许多先进模型的预测性能的比较说明了ResLSTM的优势和鲁棒性。对比10、15、30分钟时间粒度的预测精度可以看出,预测精度随着时间粒度的增加而增加。该研究可以为地铁运营商提供利用深度学习模型进行短期客流预测的思路。

01

引言

短期交通预测由于其实际应用的关键需求而引起学术界的研究兴趣。例如,在城市轨道交通(URT)中,短期客流预测(STPFF)可以提供实时的交通信息,帮助乘客做出合理的调度决策,帮助公交运营商控制客流流入以避免拥堵,或者调整列车时刻表以在高峰时段容纳更多的乘客。许多研究者在城市轨道交通中的短期客流预测研究上投入了大量的精力。因此,短期客流预测在最近几十年有了显著的发展。在早期阶段,短期客流预测的发展以传统的数学统计方法为代表,如历史平均、普通最小二乘、逻辑回归、自回归综合移动平均(ARIMA)、卡尔曼滤波和k-最近邻模型。许多研究者也对这些模型进行了总结。由于城市轨道交通最初发展得不是很快,研究人员忽视了短期客流预测在城市轨道交通中的应用。然而,这些模型中的大多数已不再用于分析道路交通,因为它们无法满足“实时”要求,也无法达到比目前最先进的模型更高的精度。

随着机器学习的发展,针对短期客流预测引入了一些基于机器搜索的模型和混合预测模型,如反向传播神经网络(BPNNs)、随机森林学习模型、支持向量机模型 (SVM)。在这一阶段,随着城市轨道交通的逐步发展,更多的研究开始关注短期客流预测。如Roos等将动态贝叶斯网络与高斯混合模型相结合,来对城市轨道交通进行短期客流预测。Li等人则是构建多尺度径向基函数网络。有研究将ARIMA与小波分解、SVM和BPNNs相结合。与大多数基于数学统计的模型相比,这些混合模型具有更好的预测精度。然而,大多数这些模型在模型的制定中没有考虑空间相关性。此外,研究人员往往以一个或多个地铁站为例来验证他们的模型。在一个有几百个地铁站的网络中同时进行预测时,这种模型不能很好地发挥作用。

作为机器学习的一个分支,深度学习模型在当今非常流行。深度神经网络(DNNs)自2006年首次提出以来,在计算机科学中的应用受到了极大的关注。随着交通基础设施的快速扩展,由于DNNs具有捕获时空、拓扑和许多其他信息的强大能力,许多研究者将其应用于城市轨道交通和道路交通中实现短期客流预测。

典型的深度学习模型包括长短期记忆(LSTM)和门控循环单元(GRUs)。虽然Guo等人提出了一种混合SVM-LSTM模型来预测城市轨道交通短期异常流量,但他们没有考虑车站间的空间相关性。 Tang等提出了一种预测流量的LSTM模型,其中时间成本矩阵和空间相关矩阵在本研究中使用。Li等建立了动态径向基函数(RBF)神经网络来预测流出量。这两项研究都只涉及了流道,但流道对城市轨道交通运营的影响更大。此外,他们没有考虑空间相关性。

其他一些模型,如卷积神经网络(CNNs),卷积LSTM (ConvLSTM),和堆叠自动编码器(SAEs)也很流行。虽然Liu等考虑了时空、环境和运营等因素构建了深度学习架构,但他们的模型只能应用于几个地铁站,而不能应用于整个网络。由于残差神经网络(ResNets)的提出,研究人员已将其应用于道路交通场景,如公交和出租车流预测。然而,就我们所知,在城市轨道交通中,ResNets在短期客流预测中的应用较少。 Li等人引入了一种创新的深度信念网络来进行多步预测。在数据处理过程中估计缺失值。总的来说,这些模型没有考虑网络的拓扑信息。

许多模型虽然考虑了时空和拓扑信息,但往往忽略了天气条件和空气质量等外部因素。由于乘客在遇到恶劣天气或严重污染的大气时可能会调整行程,所以这些外部因素在交通预测中也很重要。Li等引入了一个图卷积神经网络在城市轨道交通中进行短期客流预测。类似地,Han等人构建了时空图卷积神经网络来预测全市地铁网络的短期客流量。虽然这些研究从网络拓扑中提取了站点之间的空间相关性,但他们没有考虑外部因素,如天气状况、事件或空气质量。

在本研究中,我们构建了一个名为“ResLSTM”的深度学习架构,结合ResNet、GCN和注意力机制 LSTM在网络规模的URT中进行短期客流预测。除了地铁站之间的时空相关性,地铁站之间的拓扑关系以及天气条件和空气质量也被纳入ResLSTM,以确定这些因素是如何影响乘客出行的。:我们将我们提出的ResLSTM模型与几种流行的最新模型的性能进行了比较。实验结果表明,本文提出的ResLSTM模型性能优于基准模型。我们提出的体系结构的主要优势如下。

1) ResLSTM模型不仅考虑了时空特征,还考虑了网络拓扑、天气条件和空气质量。此外,还实现了在网络规模上进行高精度实时预测的能力。

2) ResLSTM体系结构非常健壮,当删除构成体系结构的四个分支中的一个时,对预测精度的影响可以忽略不计。

3) 定量分析了天气条件和空气质量对预报精度的影响。根据评价指标的不同,提高了预测精度。

本文的其余部分组织如后所述。第二节介绍ResNet、GCN和注意力机制LSTM的方法。在第三节中,介绍了提出的ResLSTM模型的体系结构。在第四部分,案例研究结果被讨论。第五部分总结了本研究的主要发现、局限性及其意义,并提出了今后的研究方向。

02

研究方法

模型的体系结构主要基于ResNet、GCN和注意力机制LSTM。因此,在本节中,我们将简要介绍这些组件各自的方法。

A. ResNet

使用CNN可以将网络客流处理为预处理后的图像。已有研究表明,模型越深,提取的特征越丰富。然而,由于梯度的消失或爆炸,较深的模型并不总是更好的。因此,He等人在2015年提出了包含跳跃连接的ResNet,如图1所示。

33ca2123435054376734ad8a5306b08a.png

图1:残差块

ResNet模型的目的是训练网络输出如下:

5c513f09a6e6bd65802a9d457f5b220b.png

其中,Xl和Xl+1分别表示残差块的输入和输出。

在本研究中,我们采用了改进后的残差块,如图2所示。

83ae2d244b2b1929272df14a01a45b5a.png

图2:原残块与改进残块对比

在改进后的残差块中,梯度可以通过快捷连接不受干扰地传递到之前的任何层,从而解决了梯度消失或爆炸的问题。以我们研究中使用的带有32个滤波器的残差块为例如图3所示,

ed4cd80168f5b43a41cf83023822b541.png

图3:在剩余块中流动的张量的尺寸

其中“Conv”表示卷积层,“BN”表示批处理归一化层,“ReLU”表示激活层。

B.GCN

CNN相关模型通常将流量网络视为网格矩阵。然而,这些过程忽略了网络拓扑结构对预测精度的影响。因此,我们使用GCN(如图4所示)来捕获URT-network拓扑依赖关系。

65ca9cc0a49da468bceb4ada8700ce3b.png

图4:图卷积网络

以一般图G = (V, E)为例,其中V为顶点的集合,E为表示相邻节点之间关系的边的集合,则GCN函数可定义为:

be7bcaeceeaca2ebfb88acbbdf1f087b.png

Aˆ = A + I, A ∈ Rn×n 为单位矩阵,I为单位矩阵,,Dˆ 为Aˆ的对角节点度矩阵,W为第l层的权值矩阵, H ∈ Rn×m 为特征矩阵,其中m为n个节点中每个节点的特征个数, H ∈ Rn×m 为具有拓扑信息的特征矩阵1,σ (·)激活函数。

但是,之前的一些研究表明,叠加多个GCN层不仅会提高反向传播的复杂度,还会导致梯度消失,从而降低更深层次的GCNs的性能。此外,过度平滑是指同一个顶点的多个特征收敛到同一个值,这也是更深层次的GCNs中常见的问题。因此,在本文中,我们将GCN扩展到ResNet GCN以削弱这些影响。

将每个输入矩阵In视为一个图信号,根据下式进行变换,

43470c323d71b57421bf1a7f55334279.png

其中Dˆ-1/2AˆDˆ-1/2为对称归一化拉普拉斯算子,如(3)所示,In∈Rs×t为输入,s为地铁站数量,t为每个车站历史时间步长。转换后的In’与In具有相同的形状,并包含丰富的网络拓扑信息,这些信息随后被用作ResNet的输入。

C. 注意力机制LSTM

LSTM注意力机制在预测交通流方面是有效的。由于注意机制自引入以来已成功应用于机器翻译,许多研究者将其应用于短期客流预测中。因此,为了从以前的网络层中提取不同的特征权重,我们在我们的模型中引入了注意力机制LSTM。

传统的注意力机制LSTM用于获取不同时间步长的权重分值,通常是通过对相邻的时间步长分配较大的权重分值,对距离较远的时间步长分配较小的权重分值。然而,交通预测模型由于受天气条件、乘客进出流量、网络拓扑等诸多因素的影响,过于复杂,因此基于就近原则分配权重进行评分不够理想。因此,在Wu等前人工作的基础上,我们使用全连接网络获得权重,并根据输入或LSTM输出进行评分。初步试验结果表明,后者更有效;因此,在提出的模型中,LSTM输出权值是自动评分的。令矩阵Out∈Rm×n为LSTM输出,其中m和n分别表示时间步长和每个时间步长的特征个数。然后通过下式得到基于注意力的输出(Out’)

8adb3a1ca701e9e3abbe8da418672779.png

其中,A为与Out相同形状的权重矩阵,“◦”为哈达玛乘积,f为全连通层(可通过sigmoid函数等不同激活函数激活),W为f的权重矩阵,b为偏置。

03

模型建模

在本章中,我们描述了ResLSTM模型体系结构,如图5所示,它包括四个分支。

c638a7bcfd703ff9ebfdb74b785cac89.png

图5:ResLSTM模型架构

所有输入数据均为t - n到t的时间,输出数据为t + 1时间的流入。分支1使用流入来捕获时空特征。2号分支除了它使用的是流出其他和1号分支是一样的。分支3提取网络拓扑信息。分支4代表天气条件和空气质量对预测精度的影响。在主干中使用注意力机制LSTM获取输出数据。详细的模型架构描述在A到E小节中给出。

A. 分支1:流入

历史流量先验知识是预测网络流量最重要的知识。因此,分支1捕获了流入。在以往的研究中,流入与流出之间的关系总是通过一个模型来表示:一个对应流入,另一个对应流出。但是,当必须考虑三种模式(如实时模式、每日模式和每周模式)时,模型应该有三个分支,这将显著增加其复杂性。因此,我们提出了将流入和流出分开考虑的方法。最初,对于地铁车站网中的某一车站,进站与出站之间仅略有关联,这与道路交通网完全不同;一个地铁站表现出大的流入可能只有小的流出。同时,将流入和流出分别处理可以在不降低预测精度的前提下降低模型的复杂性。目前,地铁车站的实时进站和出站都可以通过自动收费(AFC)系统实现。因此,我们考虑了三种流入模式:实时模式、日模式和周模式。流入的时间序列如下:

a025b4ce0989e94e5b9a7d60fc6342ef.png

式中,s为地铁车站数量,t为各车站历史时间步长。车站按其行号排列,如1号线、2号线等。在每一行中,相邻的车站按照列车方向排列在相邻的行中,其中“p”表示不同的模式。如果p表示实时模式、日模式或周模式,则Xr、Xd、Xw分别表示当天、前一天、前一周的流入时间序列。

正如branch1,预测t + 1时间的流入,我们将t - 4到t的三种模式的时间序列组织成一个单一的三通道“图像”。分支1的输入由下式给出

956122e18114f7458fb5147acd16c49b.png

数据被输入到两个残差块中,第一个显示32个过滤器,第二个显示64个。然后,数据被摊平并与276个神经元完全连接。然后将分支1的输出数据输入到特征融合部分。

B. 分支2:流出

分支2的流出处理与分支1的流入处理相同。因此,分支2的输入由下式给出

式中X’表示流出。

81eaff05a18825c40182811505db6698.png

C. 分支3:图信号

已经证明,流量网络拓扑对于短期客流预测非常重要。为了克服第II-B节所讨论的缺点,我们使用如图4中的分支3所示的ResNet GCN来捕捉网络拓扑的影响。我们只考虑实时模式,因为网络拓扑不会改变。根据(4)(7)(8),ResNet GCN的原始输入为:

64578f8bae0676138286551755ce85ac.png

 输入数据随后按照分支1所描述的方法进行处理

D. 分支4:天气条件和空气质量

虽然有一些研究人员考虑了天气条件对短期客流预测的影响,但就我们所知,没有人考虑过空气质量对短期客流预测的影响。然而,天气状况和空气质量都是人们制定旅行计划的重要信息。例如,寒冷的天气和严重污染的空气经常妨碍乘客进行非紧急、非必要的旅行。

因此,这个分支使用的数据集包含两个子集:显示实时温度(◦C)的天气状况,露点温度(◦C),相对湿度(%)和风速(m/s),所有这些都是每半小时记录一次,如表1所示;每小时记录一次的实时空气质量指数(AQI)和大气颗粒物(PM2.5和PM10)、SO2、NO2、CO和O3 (PM2.5和PM10)浓度,如表2所示。

表1:天气条件数据举例

dcb8f330206985a97e6a85ea6bf78c78.png

表2:空气质量数据举例

5b297da10b0e82286a308cd91dec7d69.png

如表1的第一行所示,如果我们以时间粒度(TG) =10min来进行短期客流预测时,05:00到05:10的天气条件数据使用05:00到05:30的数据。同样, 如表2的第一行所示,对应的空气质量数据05:00到05:10的数据将使用从05:00到06:00的数据。我们得到了对分支4进行预处理的输入数据I4如下:

其中w代表11个用于天气状况和空气质量数据的指标。

将预处理后的输入数据进行扁平化,然后将其添加到全连接层中,得到加权指标。然后,在第一层和第二层分别使用128和276个神经元堆叠的LSTM。然后将输出数据输入到特征融合部分。

E. 特征融合

由于四个分支输出的数据在形状上是相同的,因此很容易根据下式实现加权特征融合

28a43b15655cbc643e4dc5669f423afe.png

其中O1, O2, O3和O4是四个分支的输出,W是对应的权重向量,用于捕捉不同特征的影响程度,“◦”代表哈达玛乘积。W与输出具有相同的形状尺寸。权值向量W中的值在训练前随机初始化,可以在反向传播中进行更新。

在特征融合后应用第II-C节描述的注意力机制 LSTM。LSTM输出随后被扁平化并与276个神经元完全连接以产生最终的输出。

04

研究结果与讨论

本研究使用的AFC数据采集自2016年2月29日至4月3日连续五周05:00 - 23:00的北京地铁数据。2016年3月,北京共有17条线路和276个地铁站(不包括机场快线及其中的车站)。本研究仅使用目标期间25个工作日的数据,共计1.3亿个记录。每条记录包含卡号、进站号、出站号、进站时间、出站时间、进站名称、出站名称。

流入和流出时间序列提取参照算式(7)。在我们的研究中使用的时间粒度(TGs)为10, 15和30分钟。因此,很容易集成TG = 10, 15分钟的预测结果到预测TG = 30分钟中来比较不同TGs的预测性能。天气状况和空气质量数据集的例子载于第III-D节。

B. 模型配置

该模型使用TensorFlow和Keras实现。我们使用前四周的数据来训练模型,使用最后一周的数据来测试它们。将验证分割率设为0.2,对模型进行校准。为了平衡模型训练时间和预测精度之间的权衡,我们利用前五个网络时间步长,通过试错来预测下一个网络时间步长。对于分支1,第一剩余块有32个滤波器;第二个是64。卷积核大小为3∗3。全连接层由276个神经元组成。分支1、2和3使用相同的配置。对于分支4,全连通层由276个神经元组成,两个LSTM层由128个神经元和276个神经元组成。对于特征融合,注意LSTM层和最终全连接层分别由128个神经元和276个神经元组成。

为了避免参数初始化不当,我们对提出的ResLSTM和基线模型进行了多次训练,然后确定了超参数。在训练过程中,我们采用模型检查点和早期停止技术,以保存最优模型,避免过拟合。

在早期停止之前,训练损失和验证损失如图6所示。如图所示,训练损失和验证损失在前150个epoch中表现出显著的振动。在150个epoch之后,这两个损失保持稳定,只受到轻微的振动,这显示了所提出模型的强大鲁棒性。

53adc24b2c8b666b58894d6c3919b0a7.png

图6:训练损失和验证损失的变化

C. 基线模型

在本研究中,我们比较了几种模型的性能。请注意,当使用ARIMA在地铁网络上进行短期客流预测时,我们必须构建276个模型来代表276个车站中的每一个车站。除ARIMA外,所有基准模型都是通过训练单一模型得到276个站点的整体结果,其优化器为Adam,学习率为0.0001。对于ResLSTM的五个变体,其他配置与ResLSTM相同。具体配置如下。  

ARIMA: 一个典型的传统数学统计模型。我们使用社会科学统计软件包(SPSS®)软件中的专家建模器Expert Modeler(IBM Corp., USA)自动获得最佳的ARIMA结果。

BPNN: BPNN有两层隐形层,每层隐含层包含100个神经元。

Support VectorRegression (SVR) : scikit learn中SVR的内核设置为径向基函数(radial- basefunction, RBF-SVR)。正则化参数C设为1.0。停止标准设定为0.001。

Vanilla RNN, LSTM, and GRU: 它们都有两个核层,每个核层包含100个神经元。

CNN and ConvLSTM:它们都有两个核层,分别有32和64个过滤器。核大小为3∗3。

ResLSTM-GCN: 我们只采用了分支3。

ResLSTM-No graph:我们删除了分支3。

ResLSTM-NoW&A: 我们删除了分支4。

ResLSTM-No A: 我们删除了空气质量数据。

ResLSTM-TC: 我们把流入和流出分为两条渠道。即将分支1和2转化为三个分支,每个分支包含一种模式,两条流入和流出的通道。

我们采用端到端训练来优化模型。采用均方误差(MSE)作为损失函数。

优化器是“Adam”,学习率为0.001。我们应用三个指标来评估模型的性能:均方根误差(RMSE)、均数绝对误差(MAE)和加权均数绝对百分比误差(WMAPE)。他们分别表示如下:

5184ab808724260bdd28b6a114af4301.png

其中yi是实际值,yˆi是预测值,n是样本的数量,i是实际值的总和。

E. 结果与讨论

表3:不同模型中不同时间粒度的预测结果

66e2a661c1045ab65671244f90e05e19.png

8f4b0819ea13119549ade4c81b6a04e2.png

图7:不同模型在不同时间粒度下预测性能的比较

1)全网络预测性能:预测性能如表3和图7所示。如表3所示,在大多数情况下,深度学习模型的表现显著优于基于数学统计和基于机器学习的模型。RBF-SVR模型的性能最差,甚至比ARIMA还要差。原因可能是我们在进行ARIMA时建立了276个模型来代表276个站点中的每个站点,而SVR仅通过训练一个模型来获得276个站点的总体结果。此外,由于SVR算法计算量大,不适合大数据集的回归。第二糟糕的模型是ARIMA。虽然ARIMA中每个地铁站都有自己的独立模型,但由于ARIMA无法捕捉客流的综合非线性特征,预测效果较差。

在深度学习模型中,当仅使用单一模型进行网络预测时,所有基于卷积的模型的性能都优于基于递归的模型。正如预期的那样,LSTM和GRU的表现都优于Vanilla RNN。ConvLSTM的性能优于CNN,因为它可以捕捉更多的时间信息。随着热重的增加,ConvLSTM的性能变差。样品数量的减少可以解释这种现象。

在ResLSTM及其5个变体中,完整的ResLSTM性能最好,因为许多特性包括流入、流出、网络拓扑,以及天气条件和空气质量都得到了充分考虑。值得一提的是,建议的架构表现出很强的健壮性;也就是说,即使删除了一个分支,预测结果也不会发生显著变化(参见ResLSTM-No Graph、ResLSTM-No W&A和ResLSTM-No A的结果)。

对于拓扑信息,仅使用分支3(参见ResLSTM-GCN的结果)就可以获得令人满意的结果,这有力地证明了所提架构的健壮性。虽然在TG = 10 min时,所有模型的预测性能相似,但ResLSTM开始表现出其优越的预测性能,当TG从10 min增加到30 min时,ResLSTM与各变量的预测性能差距增大。并且,无论TG = 10、15、30 min, ResLSTM的性能都是最好的。对比ResLSTM- no Graph和ResLSTM的预测性能,可以看出网络拓扑结构对预测精度有一定的影响。对于天气状况和空气质量,比较ResLSTM-no W&A、ResLSTM-no A和ResLSTM的预报性能,我们可以根据常识推断,天气状况和空气质量数据集的引入提高了预报精度。如果天气很冷或者空气污染非常严重(PM2.5和PM10比较高),人们会减少或消除不必要的出行,这意味着这些外部因素可能会影响客流量。并对这种影响进行量化,在TG = 30 min时,考虑天气和空气质量,RMSE、MAE和WMAPE分别从60.13降至56.96、34.14降至32.58、6.43降至6.13%。对比ResLSTM- tc和ResLSTM的预测性能,我们可以推断,分别处理客流不仅可以节省计算成本,而且可以保持预测精度。

2) 单个站点预测性能:选取3个典型站点对站点预报预测进行分析。第一个是天通苑站,这是一个大型社区站,周围住着数百万人。第二个是西直门站,是一个典型的交通枢纽,三条地铁线路在那里交汇,附近有很多公交站点。最后一个是北京西站,一个靠近大火车站的地铁站。三个典型台站三次粒度预测结果如下:

4c752a3efb5123e74fd911060877985e.png

图8:天通苑站实测值与预测值的比较

在天通苑站上的表现,如图8所示,三个时间粒度无论在高峰期还是非高峰期,预测值均与实际值一致,表明ResLSTM具有较强的鲁棒性。由于天通苑站位于一个大型住宅区附近,每天早上都有成千上万的人通勤。因此,晨峰明显,流量规律显著,有助于表现。

作为大型交通枢纽,西直门站的流量呈现双峰特征。从图9中可以看出,模型在三次粒度上都保持了良好的性能,尤其是在高峰期。

1065e3c61c3672fc9fe53b8425128730.png

图9:西直门站实测值与预测值的比较

与两站不同的是,北京西站的流入量规律较低,且变化较大。但是,如图9所示,模型仍然可以捕捉到变化趋势。而且,随着时间粒度从10min增加到30min,拟合效果越来越好,表明预测性能有所提高。

8a4b9d6ae31f848c18d9524af4af69f0.png

图10:北京西站实测值与预测值的比较

综上,所提出的模型不仅可以在网络尺度上,而且可以在台站尺度上进行精确的预测。

3) 不同时间粒度下的预测性能:为了比较不同时间粒度的预测精度,我们将TG = 10和15min时的预测结果汇总到TG = 30min时的预测结果中,计算出相应的评价指标。结果如表4所示,可以看出,预测精度随着TG的增加而逐渐提高。TG在103min和30min时,RMSE、MAE和WMAPE分别从61.55降至56.96、35.22降至32.58、6.63降至6.13%。 从统计学的角度来看,这是因为在较大的时间粒度下,流量聚集时客流相似度和规律性增加,从而有助于提高总体预测精度。

表4:不同时间粒度下预测精度的比较

d9cea403b7b8760cb4e37cdfcbcacbe0.png

综上所述,ResLSTM模型在城市轨道交通中实现短期客流预测的能力令人满意。它还显示了强大的鲁棒性,有利于实际应用。

05

结论

在这项研究中,我们提出了一个名为ResLSTM的深度学习架构,其中包含了ResNet、GCN和注意力机制LSTM。据我们所知,这是首次将PM2.5和PM10等空气质量指标纳入短期客流预测。并定量分析了天气条件和空气质量对预报精度的影响。另外,我们结合了GCN和ResNet来克服GCN的缺点。主要结论总结如下:

1) ResLSTM模型不仅能够捕捉客流的时空特征,而且能够捕捉网络拓扑信息以及天气条件和空气质量对预测精度的影响。

2) ResLSTM模型显示了强大的健壮性,这对于真实的应用程序是至关重要的。对近300个地铁站在网尺度上进行短期客流预测时,预测精度较好。

3) 气象条件和空气质量对预报精度有较大影响,并对影响进行了量化。

4) 随着时间粒度增大,客流聚集的相似性和规律性增强,预测精度也随之提高。

然而,我们的研究有几个局限性。例如,我们没有考虑周末的客流,因为波动较大,而且不太规律。未来还应探索多步预测。此外,目前模型的可解释性较差,因为所提出的模型是一个“黑箱”,其中数据被输入以获得满意的预测,而不披露应用过程。未来的研究应该试图弥补这些局限性。

已标记关键词 清除标记
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页