谁能帮我弄清楚发生了什么事在我的图像自动裁剪脚本? 我有一个大的透明区域/空间PNG图像。 我想能够自动裁剪那个空间出来,剩下的要领。 原始图像具有正方形画布,最好这将是长方形的,只是封装分子。
这里的原始图像:
做了一些谷歌上搜索我碰到这是上报工作PIL / Python代码,但是在我手中,运行下面的代码在作物的图像。
import Image
import sys
image=Image.open('L_2d.png')
image.load()
imageSize = image.size
imageBox = image.getbbox()
imageComponents = image.split()
rgbImage = Image.new("RGB", imageSize, (0,0,0))
rgbImage.paste(image, mask=imageComponents[3])
croppedBox = rgbImage.getbbox()
print imageBox
print croppedBox
if imageBox != croppedBox:
cropped=image.crop(croppedBox)
print 'L_2d.png:', "Size:", imageSize, "New Size:",croppedBox
cropped.save('L_2d_cropped.png')
输出是这样的:
任何人都更熟悉图像处理/ PLI可以帮我找出这个问题?
Answer 1:
您可以使用numpy的,将图像转换为阵,找到所有非空列和行,然后创建这些图像:
import Image
import numpy as np
image=Image.open('L_2d.png')
image.load()
image_data = np.asarray(image)
image_data_bw = image_data.max(axis=2)
non_empty_columns = np.where(image_data_bw.max(axis=0)>0)[0]
non_empty_rows = np.where(image_data_bw.max(axis=1)>0)[0]
cropBox = (min(non_empty_rows), max(non_empty_rows), min(non_empty_columns), max(non_empty_columns))
image_data_new = image_data[cropBox[0]:cropBox[1]+1, cropBox[2]:cropBox[3]+1 , :]
new_image = Image.fromarray(image_data_new)
new_image.save('L_2d_cropped.png')
结果看起来像
如果有不清楚的地方,只问。
Answer 2:
对我来说,它的工作原理为:
import Image
image=Image.open('L_2d.png')
imageBox = image.getbbox()
cropped=image.crop(imageBox)
cropped.save('L_2d_cropped.png')
当通过搜索边界mask=imageComponents[3]则仅通过蓝色通道搜索。
Answer 3:
我测试了大部分的答案回复在这个岗位,但是,我结束了我自己的答案。 我用蟒蛇python3。
from PIL import Image, ImageChops
def trim(im):
bg = Image.new(im.mode, im.size, im.getpixel((0,0)))
diff = ImageChops.difference(im, bg)
diff = ImageChops.add(diff, diff, 2.0, -100)
bbox = diff.getbbox()
if bbox:
return im.crop(bbox)
if __name__ == "__main__":
bg = Image.open("test.jpg") # The image to be cropped
new_im = trim(bg)
new_im.show()
Answer 4:
下面是使用另一个版本pyvips 。
这一个是有点爱好者:它看起来在像素(0,0),假定为背景色,然后再执行中值滤波和找到的第一个和最后一行以及含有从由多个不同的像素列大于阈值。 这种额外的处理装置,它也适用于照相或压缩图像,其中,一个简单的修整可以通过噪声或压缩失真被甩出。
import sys
import pyvips
# An equivalent of ImageMagick's -trim in libvips ... automatically remove
# "boring" image edges.
# We use .project to sum the rows and columns of a 0/255 mask image, the first
# non-zero row or column is the object edge. We make the mask image with an
# amount-differnt-from-background image plus a threshold.
im = pyvips.Image.new_from_file(sys.argv[1])
# find the value of the pixel at (0, 0) ... we will search for all pixels
# significantly different from this
background = im(0, 0)
# we need to smooth the image, subtract the background from every pixel, take
# the absolute value of the difference, then threshold
mask = (im.median(3) - background).abs() > 10
# sum mask rows and columns, then search for the first non-zero sum in each
# direction
columns, rows = mask.project()
# .profile() returns a pair (v-profile, h-profile)
left = columns.profile()[1].min()
right = columns.width - columns.fliphor().profile()[1].min()
top = rows.profile()[0].min()
bottom = rows.height - rows.flipver().profile()[0].min()
# and now crop the original image
im = im.crop(left, top, right - left, bottom - top)
im.write_to_file(sys.argv[2])
这是一种在运行8K x 8K的像素NASA地球图像 :
$ time ./trim.py /data/john/pics/city_lights_asia_night_8k.jpg x.jpg
real 0m1.868s
user 0m13.204s
sys 0m0.280s
peak memory: 100mb
之前:
后:
有一个博客张贴在这里的一些更多的讨论 。
Answer 5:
跨此帖一最近,发现了PIL库发生了变化。 我重新实现这跟OpenCV的:
import cv2
def crop_im(im, padding=0.1):
"""
Takes cv2 image, im, and padding % as a float, padding,
and returns cropped image.
"""
bw = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
rows, cols = bw.shape
non_empty_columns = np.where(bw.min(axis=0)<255)[0]
non_empty_rows = np.where(bw.min(axis=1)<255)[0]
cropBox = (min(non_empty_rows) * (1 - padding),
min(max(non_empty_rows) * (1 + padding), rows),
min(non_empty_columns) * (1 - padding),
min(max(non_empty_columns) * (1 + padding), cols))
cropped = im[cropBox[0]:cropBox[1]+1, cropBox[2]:cropBox[3]+1 , :]
return cropped
im = cv2.imread('testimage.png')
cropped = crop_im(im)
cv2.imshow('', cropped)
cv2.waitKey(0)
Answer 6:
我知道,这个职位是旧的,但由于某种原因,没有任何提示的答案为我工作。 所以我砍死从现有的答案我自己的版本:
import Image
import numpy as np
import glob
import shutil
import os
grey_tolerance = 0.7 # (0,1) = crop (more,less)
f = 'test_image.png'
file,ext = os.path.splitext(f)
def get_cropped_line(non_empty_elms,tolerance,S):
if (sum(non_empty_elms) == 0):
cropBox = ()
else:
non_empty_min = non_empty_elms.argmax()
non_empty_max = S - non_empty_elms[::-1].argmax()+1
cropBox = (non_empty_min,non_empty_max)
return cropBox
def get_cropped_area(image_bw,tol):
max_val = image_bw.max()
tolerance = max_val*tol
non_empty_elms = (image_bw<=tolerance).astype(int)
S = non_empty_elms.shape
# Traverse rows
cropBox = [get_cropped_line(non_empty_elms[k,:],tolerance,S[1]) for k in range(0,S[0])]
cropBox = filter(None, cropBox)
xmin = [k[0] for k in cropBox]
xmax = [k[1] for k in cropBox]
# Traverse cols
cropBox = [get_cropped_line(non_empty_elms[:,k],tolerance,S[0]) for k in range(0,S[1])]
cropBox = filter(None, cropBox)
ymin = [k[0] for k in cropBox]
ymax = [k[1] for k in cropBox]
xmin = min(xmin)
xmax = max(xmax)
ymin = min(ymin)
ymax = max(ymax)
ymax = ymax-1 # Not sure why this is necessary, but it seems to be.
cropBox = (ymin, ymax-ymin, xmin, xmax-xmin)
return cropBox
def auto_crop(f,ext):
image=Image.open(f)
image.load()
image_data = np.asarray(image)
image_data_bw = image_data[:,:,0]+image_data[:,:,1]+image_data[:,:,2]
cropBox = get_cropped_area(image_data_bw,grey_tolerance)
image_data_new = image_data[cropBox[0]:cropBox[1]+1, cropBox[2]:cropBox[3]+1 , :]
new_image = Image.fromarray(image_data_new)
f_new = f.replace(ext,'')+'_cropped'+ext
new_image.save(f_new)
Answer 7:
这是对snew的答复,这适用于透明背景的改善。 随着mathematical morphology我们可以把它放在白色背景(而不是透明的)工作,用下面的代码:
from PIL import Image
from skimage.io import imread
from skimage.morphology import convex_hull_image
im = imread('L_2d.jpg')
plt.imshow(im)
plt.title('input image')
plt.show()
# create a binary image
im1 = 1 - rgb2gray(im)
threshold = 0.5
im1[im1 <= threshold] = 0
im1[im1 > threshold] = 1
chull = convex_hull_image(im1)
plt.imshow(chull)
plt.title('convex hull in the binary image')
plt.show()
imageBox = Image.fromarray((chull*255).astype(np.uint8)).getbbox()
cropped = Image.fromarray(im).crop(imageBox)
cropped.save('L_2d_cropped.jpg')
plt.imshow(cropped)
plt.show()
文章来源: Automatically cropping an image with python/PIL