python中series按值选行_根据 Pandas 中列的值从DataFrame中选择行

如何根据 Pandas 中某些列的值从DataFrame中选择行?在SQL中,可以使用:

select * from table where colume_name = some_value.

试图看过 Pandas 的文档,但没有找到满意的答案。

最佳解决方案

要选择列的值等于某个值"some_value"的行,请使用==:

df.loc[df['column_name'] == some_value]

要选择列值在链表some_values中的行,请使用isin:

df.loc[df['column_name'].isin(some_values)]

将多个条件与&组合使用:

df.loc[(df['column_name'] == some_value) & df['other_column'].isin(some_values)]

要选择列值不等于some_value的行,请使用!=:

df.loc[df['column_name'] != some_value]

isin返回一个布尔序列,因此要选择其值不在some_values中的行,使用~取反布尔序列:

df.loc[~df['column_name'].isin(some_values)]

例如,

import pandas as pd

import numpy as np

df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),

'B': 'one one two three two two one three'.split(),

'C': np.arange(8), 'D': np.arange(8) * 2})

print(df)

# A B C D

# 0 foo one 0 0

# 1 bar one 1 2

# 2 foo two 2 4

# 3 bar three 3 6

# 4 foo two 4 8

# 5 bar two 5 10

# 6 foo one 6 12

# 7 foo three 7 14

print(df.loc[df['A'] == 'foo'])

输出

A B C D

0 foo one 0 0

2 foo two 2 4

4 foo two 4 8

6 foo one 6 12

7 foo three 7 14

如果想包含多个值,把它们放在一个列表中(或者更一般地说,任何可迭代的)并使用isin:

print(df.loc[df['B'].isin(['one','three'])])

输出

A B C D

0 foo one 0 0

1 bar one 1 2

3 bar three 3 6

6 foo one 6 12

7 foo three 7 14

注意,如果希望多次执行此操作,首先创建索引并使用df.loc会更有效:

df = df.set_index(['B'])

print(df.loc['one'])

输出

A C D

B

one foo 0 0

one bar 1 2

one foo 6 12

或者,要包含来自索引的多个值,使用df.index.isin:

df.loc[df.index.isin(['one','two'])]

输出

A C D

B

one foo 0 0

one bar 1 2

two foo 2 4

two foo 4 8

two bar 5 10

one foo 6 12

次佳解决方案

长话短说

Pandas 相当于

select * from table where column_name = some_value

的是

table[table.column_name == some_value]

多种条件:

table((table.column_name == some_value) | (table.column_name2 == some_value2))

或者

table.query('column_name == some_value | column_name2 == some_value2')

代码示例

import pandas as pd

# Create data set

d = {'foo':[100, 111, 222],

'bar':[333, 444, 555]}

df = pd.DataFrame(d)

# Full dataframe:

df

# Shows:

# bar foo

# 0 333 100

# 1 444 111

# 2 555 222

# Output only the row(s) in df where foo is 222:

df[df.foo == 222]

# Shows:

# bar foo

# 2 555 222

在上面的代码中,行df[df.foo == 222]给出了基于列值222的行。

多种条件也是可以的:

df[(df.foo == 222) | (df.bar == 444)]

# bar foo

# 1 444 111

# 2 555 222

但对于以上情形,我会建议使用查询函数,因为它更简洁,并且会得到相同的结果:

df.query('foo == 222 | bar == 444')

第三种解决方案

有几种基本的方法可以从 Pandas 数据框中选择行。

布尔索引

位置索引

标签索引

API

对于每种基本类型,可以通过将用法限制为 Pandas API来简化事情,或者可以在API之外进行冒险,通常使用numpy,可以加快速度。

下面正对每种情形给出例子,并说明何时使用哪些技术。

设置我们需要的第一件事是确定一个条件,它将作为我们选择行的标准。 沿用上文的column_name == some_value,我们从这里开始并包含一些其他常见用例。

import pandas as pd, numpy as np

df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),

'B': 'one one two three two two one three'.split(),

'C': np.arange(8), 'D': np.arange(8) * 2})

假设我们的标准是列'A' = 'foo'

1.布尔索引需要找到每行的'A'列的真值等于'foo',然后使用这些真值来确定要保留的行。通常,我们将这个系列命名为一组真值mask:

mask = df['A'] == 'foo'

然后我们可以使用这个掩码来对数据帧进行分片或索引

df[mask]

A B C D

0 foo one 0 0

2 foo two 2 4

4 foo two 4 8

6 foo one 6 12

7 foo three 7 14

这是完成这项任务最简单的方法之一,如果性能或直觉不成问题,这应该是要选择的方法。但是,如果性能是一个问题,那么您可能需要考虑另一种创建mask的方法。

2.位置索引。为了确定切片的位置,我们首先需要执行与上面相同的布尔分析。这让我们执行一个额外的步骤来完成相同的任务。

mask = df['A'] == 'foo'

pos = np.flatnonzero(mask)

df.iloc[pos]

A B C D

0 foo one 0 0

2 foo two 2 4

4 foo two 4 8

6 foo one 6 12

7 foo three 7 14

3.标签索引可以非常方便

df.set_index('A', append=True, drop=False).xs('foo', level=1)

A B C D

0 foo one 0 0

2 foo two 2 4

4 foo two 4 8

6 foo one 6 12

7 foo three 7 14

4. pd.DataFrame.query是一种非常优雅/直观的执行此任务的方式。但通常会比较慢。但是,如果您注意以下时间,对于大数据,查询非常有效。

df.query('A == "foo"')

A B C D

0 foo one 0 0

2 foo two 2 4

4 foo two 4 8

6 foo one 6 12

7 foo three 7 14

我的首选是使用Boolean mask

通过修改我们创建Boolean mask的方式可以实现实际的改进。

mask替代方法1

使用底层的numpy数组并放弃创建另一个pd.Series的开销

mask = df['A'].values == 'foo'

我将在最后展示更完整的时间测试,但只要看看使用示例数据框所获得的性能提升。首先我们看看创建mask的差异

%timeit mask = df['A'].values == 'foo'

%timeit mask = df['A'] == 'foo'

5.84 µs ± 195 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

166 µs ± 4.45 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

使用numpy阵列评估mask的速度要快30倍。部分原因是numpy评估速度更快。这也部分归因于缺少构建索引和相应的pd.Series对象所需的开销。

接下来我们将看一个mask与另一个mask切片的时间。

mask = df['A'].values == 'foo'

%timeit df[mask]

mask = df['A'] == 'foo'

%timeit df[mask]

219 µs ± 12.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

239 µs ± 7.03 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

性能提升并不明显。我们会看看这是否能够通过更强大的测试。

mask替代方案2

我们也可以重构数据框。重建数据框时有一个很大的警告 - 当你这样做时你必须考虑到dtypes!

我们会这样做,而不是df[mask]

pd.DataFrame(df.values[mask], df.index[mask], df.columns).astype(df.dtypes)

如果数据帧是混合类型,就像我们的例子一样,那么当我们得到df.values时,得到的数组是dtype object,因此新数据帧的所有列将是dtype object。因此需要astype(df.dtypes),这会消除掉潜在的性能收益。

%timeit df[m]

%timeit pd.DataFrame(df.values[mask], df.index[mask], df.columns).astype(df.dtypes)

216 µs ± 10.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

1.43 ms ± 39.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

但是,如果DataFrame不是混合类型的,这是一个非常有用的方法。

给定

np.random.seed([3,1415])

d1 = pd.DataFrame(np.random.randint(10, size=(10, 5)), columns=list('ABCDE'))

d1

A B C D E

0 0 2 7 3 8

1 7 0 6 8 6

2 0 2 0 4 9

3 7 3 2 4 3

4 3 6 7 7 4

5 5 3 7 5 9

6 8 7 6 4 7

7 6 2 6 6 5

8 2 8 7 5 8

9 4 7 6 1 5

%%timeit

mask = d1['A'].values == 7

d1[mask]

179 µs ± 8.73 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

%%timeit

mask = d1['A'].values == 7

pd.DataFrame(d1.values[mask], d1.index[mask], d1.columns)

87 µs ± 5.12 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

我们把时间缩短了一半。

mask备选3

也可以使用pd.Series.isin来说明df['A']中的每个元素都是一组值。如果我们的值集合是一组值,即'foo',则这将评估为相同的结果。但是如果需要的话,它也可以推广到包括更大的值集合。事实证明,尽管这是一个更为通用的解决方案,但它仍然可以非常快。对于那些不熟悉这个概念的人来说,唯一真正的损失是不太直观。

mask = df['A'].isin(['foo'])

df[mask]

A B C D

0 foo one 0 0

2 foo two 2 4

4 foo two 4 8

6 foo one 6 12

7 foo three 7 14

但是,和以前一样,我们可以利用numpy来改善性能。我们将使用np.in1d

mask = np.in1d(df['A'].values, ['foo'])

df[mask]

A B C D

0 foo one 0 0

2 foo two 2 4

4 foo two 4 8

6 foo one 6 12

7 foo three 7 14

时间

我将包括其他文章中提到的其他概念,以供参考。代码如下

此表中的每个列表示一个不同长度的数据帧,我们将在其中测试每个函数。每列显示相对所需的时间,以1.0的基础索引为基础给出最快的函数。

res.div(res.min())

10 30 100 300 1000 3000 10000 30000

mask_standard 2.156872 1.850663 2.034149 2.166312 2.164541 3.090372 2.981326 3.131151

mask_standard_loc 1.879035 1.782366 1.988823 2.338112 2.361391 3.036131 2.998112 2.990103

mask_with_values 1.010166 1.000000 1.005113 1.026363 1.028698 1.293741 1.007824 1.016919

mask_with_values_loc 1.196843 1.300228 1.000000 1.000000 1.038989 1.219233 1.037020 1.000000

query 4.997304 4.765554 5.934096 4.500559 2.997924 2.397013 1.680447 1.398190

xs_label 4.124597 4.272363 5.596152 4.295331 4.676591 5.710680 6.032809 8.950255

mask_with_isin 1.674055 1.679935 1.847972 1.724183 1.345111 1.405231 1.253554 1.264760

mask_with_in1d 1.000000 1.083807 1.220493 1.101929 1.000000 1.000000 1.000000 1.144175

您会注意到最快的时间似乎在mask_with_values和mask_with_in1d之间共享

res.T.plot(loglog=True)

函数

def mask_standard(df):

mask = df['A'] == 'foo'

return df[mask]

def mask_standard_loc(df):

mask = df['A'] == 'foo'

return df.loc[mask]

def mask_with_values(df):

mask = df['A'].values == 'foo'

return df[mask]

def mask_with_values_loc(df):

mask = df['A'].values == 'foo'

return df.loc[mask]

def query(df):

return df.query('A == "foo"')

def xs_label(df):

return df.set_index('A', append=True, drop=False).xs('foo', level=-1)

def mask_with_isin(df):

mask = df['A'].isin(['foo'])

return df[mask]

def mask_with_in1d(df):

mask = np.in1d(df['A'].values, ['foo'])

return df[mask]

测试

res = pd.DataFrame(

index=[

'mask_standard', 'mask_standard_loc', 'mask_with_values', 'mask_with_values_loc',

'query', 'xs_label', 'mask_with_isin', 'mask_with_in1d'

],

columns=[10, 30, 100, 300, 1000, 3000, 10000, 30000],

dtype=float

)

for j in res.columns:

d = pd.concat([df] * j, ignore_index=True)

for i in res.index:a

stmt = '{}(d)'.format(i)

setp = 'from __main__ import d, {}'.format(i)

res.at[i, j] = timeit(stmt, setp, number=50)

特殊时间查看整个数据帧的单个non-object dtype时的特殊情况。代码如下

spec.div(spec.min())

10 30 100 300 1000 3000 10000 30000

mask_with_values 1.009030 1.000000 1.194276 1.000000 1.236892 1.095343 1.000000 1.000000

mask_with_in1d 1.104638 1.094524 1.156930 1.072094 1.000000 1.000000 1.040043 1.027100

reconstruct 1.000000 1.142838 1.000000 1.355440 1.650270 2.222181 2.294913 3.406735

spec.T.plot(loglog=True)

函数

np.random.seed([3,1415])

d1 = pd.DataFrame(np.random.randint(10, size=(10, 5)), columns=list('ABCDE'))

def mask_with_values(df):

mask = df['A'].values == 'foo'

return df[mask]

def mask_with_in1d(df):

mask = np.in1d(df['A'].values, ['foo'])

return df[mask]

def reconstruct(df):

v = df.values

mask = np.in1d(df['A'].values, ['foo'])

return pd.DataFrame(v[mask], df.index[mask], df.columns)

spec = pd.DataFrame(

index=['mask_with_values', 'mask_with_in1d', 'reconstruct'],

columns=[10, 30, 100, 300, 1000, 3000, 10000, 30000],

dtype=float

)

测试

for j in spec.columns:

d = pd.concat([df] * j, ignore_index=True)

for i in spec.index:

stmt = '{}(d)'.format(i)

setp = 'from __main__ import d, {}'.format(i)

spec.at[i, j] = timeit(stmt, setp, number=50)

第四种方案

感觉前述的答案的语法冗余且难以记住 。 Pandas在v0.13中引入了query()方法,我更喜欢它。对于上面的问题,可以用df.query('col == val')

In [167]: n = 10

In [168]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))

In [169]: df

Out[169]:

a b c

0 0.687704 0.582314 0.281645

1 0.250846 0.610021 0.420121

2 0.624328 0.401816 0.932146

3 0.011763 0.022921 0.244186

4 0.590198 0.325680 0.890392

5 0.598892 0.296424 0.007312

6 0.634625 0.803069 0.123872

7 0.924168 0.325076 0.303746

8 0.116822 0.364564 0.454607

9 0.986142 0.751953 0.561512

# pure python

In [170]: df[(df.a < df.b) & (df.b < df.c)]

Out[170]:

a b c

3 0.011763 0.022921 0.244186

8 0.116822 0.364564 0.454607

# query

In [171]: df.query('(a < b) & (b < c)')

Out[171]:

a b c

3 0.011763 0.022921 0.244186

8 0.116822 0.364564 0.454607

您也可以通过预先配置@来访问环境中的变量。

exclude = ('red', 'orange')

df.query('color not in @exclude')

第五种方案

这是一个简单的例子

from pandas import DataFrame

# Create data set

d = {'Revenue':[100,111,222],

'Cost':[333,444,555]}

df = DataFrame(d)

# mask = Return True when the value in column "Revenue" is equal to 111

mask = df['Revenue'] == 111

print mask

# Result:

# 0 False

# 1 True

# 2 False

# Name: Revenue, dtype: bool

# Select * FROM df WHERE Revenue = 111

df[mask]

# Result:

# Cost Revenue

# 1 444 111

第六种方案

使用numpy.where可以获得更快的结果。

In [76]: df.iloc[np.where(df.A.values=='foo')]

Out[76]:

A B C D

0 foo one 0 0

2 foo two 2 4

4 foo two 4 8

6 foo one 6 12

7 foo three 7 14

时间比较:

In [68]: %timeit df.iloc[np.where(df.A.values=='foo')] # fastest

1000 loops, best of 3: 380 µs per loop

In [69]: %timeit df.loc[df['A'] == 'foo']

1000 loops, best of 3: 745 µs per loop

In [71]: %timeit df.loc[df['A'].isin(['foo'])]

1000 loops, best of 3: 562 µs per loop

In [72]: %timeit df[df.A=='foo']

1000 loops, best of 3: 796 µs per loop

In [74]: %timeit df.query('(A=="foo")') # slowest

1000 loops, best of 3: 1.71 ms per loop

参考资料

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值