1、基本概念
点集 | 区间 | 领域 | ||
---|---|---|---|---|
一维 | 直线 | 实数集 | 线段(端点) | (不含端点) |
二维 | 平面 | 实平面 | 平面区域(边界) | (不含边界) |
三维 | 空间 | 实空间 | 曲面(边界)&体(表面) | (不含边界&表面) |
点和点集的关系
内点 | 外点 | 边界点 |
---|---|---|
点集E内 | 点集E外 | 点集E边界上 |
存在领域属于E | 存在领域与E交集为空 | 任意领域与E、CUE皆有交集 |
重要的平面点集
名称 | 含义 |
---|---|
开集 | 没边界点 |
闭集 | 包含内点和边界点 |
连通集 | 任意两点连连看 |
开区域 | 连通开集 |
闭区域 | 连通闭集 |
有界集 | 能找着一个确定的最大半径 |
e.g.
{(x,y)|1
{(x,y)|x²>1}无界、开集、不连通
2、多元函数
概念(n元函数):
任意(x,y)属于D属于R^n, 存在唯一u属于R使得f(a,b,c,……,n)=u
二重极限(以二元为例,可推广至n元):
设f(x,y)在P0(x0,y0)极限为A,存在一个半径δ,使f(x,y)所有点P(x,y)都在P0的这个半径的去心邻域里,从而使得f(x,y)与A的差的绝对值小于任意一个极小正值(即无穷小)。
重点:
证明:找到那个半径0
证反:P趋于P0,方向任意&&路径任意(无穷多≠任意)
e.g.
性质 | 备注 |
---|---|
多元初等函数在定义区域内连续 | 定义区域包含在定义域内;极限值=函数值 |
有界性定理 | |
最值定理 | 值为一,取值点不唯一 |
介值定理 | 能取到最值间任一函数值 |
3、偏导数
偏增量(在x0处关于x):Δxz=f(x0+Δx,y0)-f(x0,y0)
偏导数(在x0处关于x):当Δx趋于0时(Δxz/Δx)的极限
求偏导实质上,就是将其他变量视作常数对指定自变量求导。
有时候可以通过先将其他自变量数值代入以简化计算。
巧妙运用轮换对称性简化计算。
导数拆开表示微商;偏导数是一个整体符号,不能拆分,不能抵消。