matlab求二元函数极值算法_[小白头秃]多元函数基本概念总结

这篇博客详细介绍了多元函数的基本概念,包括点集关系、二元函数、偏导数、全微分、多元复合函数求导、隐函数求导、几何应用和极值问题。重点讲解了偏导数的几何意义、全微分的计算及其在求解函数极值中的应用,以及如何利用拉格朗日乘数法解决条件极值问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、基本概念

点集 区间 领域
一维 直线 实数集 线段(端点) (不含端点)
二维 平面 实平面 平面区域(边界) (不含边界)
三维 空间 实空间 曲面(边界)&体(表面) (不含边界&表面)
点和点集的关系
内点 外点 边界点
点集E内 点集E外 点集E边界上
存在领域属于E 存在领域与E交集为空 任意领域与E、CUE皆有交集
重要的平面点集
名称 含义
开集 没边界点
闭集 包含内点和边界点
连通集 任意两点连连看
开区域 连通开集
闭区域 连通闭集
有界集 能找着一个确定的最大半径

e.g.

  • {(x,y)|1

  • {(x,y)|x²>1}无界、开集、不连通

2、多元函数

概念(n元函数):

任意(x,y)属于D属于R^n, 存在唯一u属于R使得f(a,b,c,……,n)=u

二重极限(以二元为例,可推广至n元):

设f(x,y)在P0(x0,y0)极限为A,存在一个半径δ,使f(x,y)所有点P(x,y)都在P0的这个半径的去心邻域里,从而使得f(x,y)与A的差的绝对值小于任意一个极小正值(即无穷小)。

重点:

证明:找到那个半径0

证反:P趋于P0,方向任意&&路径任意(无穷多≠任意)

e.g.

性质 备注
多元初等函数在定义区域内连续 定义区域包含在定义域内;极限值=函数值
有界性定理
最值定理 值为一,取值点不唯一
介值定理 能取到最值间任一函数值

3、偏导数

偏增量(在x0处关于x):Δxz=f(x0+Δx,y0)-f(x0,y0)
偏导数(在x0处关于x):当Δx趋于0时(Δxz/Δx)的极限
  • 求偏导实质上,就是将其他变量视作常数对指定自变量求导。

  • 有时候可以通过先将其他自变量数值代入以简化计算。

  • 巧妙运用轮换对称性简化计算。

  • 导数拆开表示微商;偏导数是一个整体符号,不能拆分,不能抵消。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值