腾讯的星星海服务器芯片,腾讯(00700)会议扩容背后:100万核计算资源全由自研服务器星星海支撑...

腾讯会议在疫情期间需求激增,通过腾讯云的星星海服务器进行了大规模扩容,实现了日均1.5万台云主机的快速扩容,总计超过100万核计算资源。星星海服务器在硬件质量、云化适配和故障检测方面展现出高效能,保障了腾讯会议的用户体验。此外,星星海服务器在微信、视频转码、广告检索等业务中也表现出卓越性能,提升了业务吞吐能力和处理速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近期,远程会议及协同办公需求暴增。从1月29日开始到2月6日,腾讯会议每天都在进行资源扩容,日均扩容云主机接近1.5万台,8天总共扩容超过10万台云主机,共涉及超百万核的计算资源投入。

8a0cbd307775b37e1a3ab800803dcfcb.png

值得一提的是,腾讯会议在此期间扩容的这100万核服务器资源全部由腾讯云自研的服务器星星海提供支撑,这也是腾讯云星星海服务器首次承担如此大规模的计算资源保障任务。

今年遇上公共卫生事件,腾讯会议第一时间面向全国用户免费开放300人会议协同能力,外界对腾讯会议的使用量极速增加。为了保障用户使用体验,腾讯云快速调集服务器资源储备,快速有效地支撑起腾讯会议业务量暴增对计算资源的需求。

d6e7186afa602280455dcbd253a7ed4e.png

除了丰富的资源储备外,星星海服务器全流程的自主可控也是确保腾讯会议能够快速扩容的原因之一。刘裕勋介绍,作为腾讯第一款自研服务器,星星海服务器除了在软硬件系统上进行了自主研发设计外,还在芯片等关键部件上与供应链企业进行了深度定制。“这些举措有效提升了我们在硬件质量验收、云化适配和故障检测修复等环节的效率,进而也提升了腾讯云大规模计算资源的调度效率。腾讯会议因此能够实现单日高达五十万核计算资源的快速扩容。”

与此同时,星星海服务器与腾讯云在虚拟化、计算资源管理、云监控、热迁移等方面的优势技术能力产生软硬件协同效应。以故障热迁移为例,一旦系统监测到某一台物理服务器状态为不健康,腾讯云的快速故障热迁移能力能够在用户无感知的情况下,将子机迁移到健康的母机上,保障业务平稳运行。

此外,作为一款为云而生的服务器硬件,星星海服务器也表现出了在云端业务场景的天然优势。根据测试,基于星星海服务器的云服务实例综合性能提升35%以上,其中视频处理速度提升40%,图形转码得分提升35%,Web服务页面QPS(每秒查询率)提升高达152%。同时,星星海服务器具备的多CPU核心、超大缓存的特性,能够支持超大规格云主机实例,单台云主机性能峰值能够达到百万级QPS。

“在优质的计算能力护航下,腾讯会议目前可以满足全球130个国家和地区的千万级用户的会议需求。 ”腾讯云副总裁吴祖榕表示。

453de97a604556d6a1a15ceb717f66a7.png

目前,星星海服务器已经在腾讯内部多个业务模块中应用,在微信、QQ、视频转码、广告检索等产品和业务上也表现出了亮眼的性能。例如,微信业务性能测试显示,采用星星海服务器能使其业务吞吐能力提升230%以上;在视频转码性能测试中,其性能也提升了200%;广告检索业务中使用星星海服务器也可明显降低检索延时。

除此之外,在腾讯教育的远程课堂业务中,腾讯云也采用了星星海服务器,支撑了全国数千万师生的在线教学。

“经历几次高峰业务实战,星星海服务器与腾讯云基础架构能力之间的磨合进一步完善。后续,腾讯云也将积极把星星海服务器部署到遍布全球的数据中心中,以云服务的形式将具有高性价比的计算能力,开放给云上的数百万用户。”刘裕勋说。

基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值