剑指Offer-Python题解(一)
00 目录-按照标签分类
数据结构类题目数组13-调整数组顺序使奇数位于偶数前面
19-顺时针打印矩阵
28-数组中出现次数超过一半的数字
50-数组中重复的数字
51-构建乘积数组
32-把数组排成最小的数
链表03-从尾到头打印链表
14-链表中倒数第k个结点
15-反转链表
16-合并两个或k个有序链表
25-复杂链表的复制
36-两个链表的第一个公共结点
55-链表中环的入口结点
56-删除链表中重复的结点
树04-重建二叉树
17-树的子结构
18-二叉树的镜像
22-从上往下打印二叉树
23-二叉搜索树的后序遍历序列
24-二叉树中和为某一值的路径
26-二叉搜索树与双向链表
38-二叉树的深度
39-平衡二叉树
57-二叉树的下一个结点
58-对称的二叉树
59-按之字形顺序打印二叉树
60-把二叉树打印成多行
61-序列化二叉树
62-二叉搜索树的第k个结点
63-数据流中的中位数
栈和队列05-用两个栈实现队列
20-包含min函数的栈
21-栈的压入、弹出序列
44-翻转单词顺序列
64-滑动窗口的最大值
堆29-最小的K个数
哈希表34-第一个只出现一次的字符
图65-矩阵中的路径
66-机器人的运动范围
字符串43-左旋转字符串
49-把字符串转换成整数
52-正则表达式匹配
53-表示数值的字符串
54-字符流中第一个不重复的字符
算法类题目斐波那切数列07-斐波拉契数列
08-跳台阶
09-变态跳台阶
10-矩形覆盖
搜索算法01-二维数组的查找
06-旋转数组的最小数字
37-数字在排序数组中出现的次数
全排列27-字符串的排列
动态规划30-连续子数组的最大和
52-正则表达式匹配
回溯65-矩阵中的路径
66-机器人的运动范围
排序35-数组中的逆序对
29-最小的K个数
位运算11-二进制中1的个数
12-数值的整数次方
40-数组中只出现一次的数字
其他算法02-替换空格
31-整数中1出现的次数(从1到n整数中1出现的次数)
33-丑数
41-和为S的连续正数序列
42-和为S的两个数字
45-扑克牌顺子
46-孩子们的游戏-圆圈中最后剩下的数
47-求1+2+3+...+n
48-不用加减乘除做加法
01 二维数组的查找
题目描述
在一个二维数组中(每个一维数组的长度相同),每一行都按照从到右递增的 顺序排列,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
解题思路
代码
# -*- coding:utf-8 -*-
# 在一个二维数组中(每个一维数组的长度相同),
# 每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。
# 请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
class Solution:
# 从左上角开始,大了往左,小了往下
def Find(self, target, array):
if len(array) == 0 or len(array[0]) == 0:
return False
i = 0
j = len(array[0]) - 1
while i < len(array) and j >= 0:
if array[i][j] == target:
return True
elif array[i][j] > target:
j = j - 1
else:
i = i + 1
return False
if __name__ == '__main__':
S = Solution()
print(S.Find(3, [[1, 2], [3, 4]]))
02 替换空格
题目描述
请实现一个函数,将一个字符串中的每个空格替换成“%20”。例如,当字符串为We Are Happy.则经过替换之后的字符串为We%20Are%20Happy。
解题思路
代码
# -*- coding:utf-8 -*-
# 请实现一个函数,将一个字符串中的每个空格替换成“%20”。
# 例如,当字符串为We Are Happy.则经过替换之后的字符串为We%20Are%20Happy。
class Solution:
def replaceSpace(self, s):
return s.replace(' ', '%20')
if __name__ == '__main__':
S = Solution()
print(S.replaceSpace('ji kkkda hj'))
03 从尾到头打印链表
题目描述
输入一个链表,按链表从尾到头的顺序返回一个ArrayList。
解题思路
代码
# coding:utf-8
# 输入一个链表,按链表值从尾到头的顺序返回一个ArrayList
class Node(object):
"""节点"""
def __init__(self, elem):
self.elem = elem
self.next = None
class SingleLinkList(object):
"""单链表"""
def __init__(self, node=None):
self.__head = node
def is_empty(self):
"""链表是否为空"""
return self.__head == None
def length(self):
"""链表长度"""
# cur游标,用来移动遍历节点
cur = self.__head
# count记录数量
count = 0
while cur != None:
count += 1
cur = cur.next
return count
def travel(self):
"""遍历整个链表"""
cur = self.__head
while cur != None:
print(cur.elem, end=" ")
cur = cur.next
print("")
def add(self, item):
"""链表头部添加元素, 头插法"""
node = Node(item)
node.next = self.__head
self.__head = node
def append(self, item):
"""链表尾部添加元素, 尾插法"""
node = Node(item)
if self.is_empty():
self.__head = node
else:
cur = self.__head
while cur.next != None:
cur = cur.next
cur.next = node
def insert(self, pos, item):
"""指定位置添加元素, pos 从0开始
"""
if pos <= 0:
self.add(item)
elif pos > (self.length() - 1):
self.append(item)
else:
pre = self.__head
count = 0
while count < (pos - 1):
count += 1
pre = pre.next
# 当循环退出后,pre指向pos-1位置
node = Node(item)
node.next = pre.next
pre.next = node
def remove(self, item):
"""删除节点"""
cur = self.__head
pre = None
while cur != None:
if cur.elem == item:
# 先判断此结点是否是头节点
# 头节点
if cur == self.__head:
self.__head = cur.next
else:
pre.next = cur.next
break
else:
pre = cur
cur = cur.next
def search(self, item):
"""查找节点是否存在"""
cur = self.__head
while cur != None:
if cur.elem == item:
return True
else:
cur = cur.next
return False
def get_head(self):
return self.__head
class Solution:
def printListFromTailToHead(self, listNode):
val_list = []
if listNode == None:
return val_list
while listNode != None:
val_list.append(listNode.elem)
listNode = listNode.next
val_list.reverse()
return val_list
if __name__ == "__main__":
ll = SingleLinkList()
ll.append(1)
ll.append(1)
ll.append(3)
ll.append(4)
ll.append(5)
ll.append(6)
ll.travel()
S = Solution()
print(S.printListFromTailToHead(ll.get_head()))
04 重建二叉树
题目描述
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
解题思路
代码
# -*- coding:utf-8 -*-
# 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。
# 假设输入的前序遍历和中序遍历的结果中都不含重复的数字。
# 例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},
# 则重建二叉树并返回。
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class Solution:
def reConstructBinaryTree(self, pre, tin):
if pre == []:
return
val = pre[0]
idx = tin.index(val)
ltin = tin[0:idx]
rtin = tin[(idx + 1):]
lpre = pre[1:(1 + len(ltin))]
rpre = pre[(1 + len(ltin)):]
root = TreeNode(val)
root.left = self.reConstructBinaryTree(lpre, ltin)
root.right = self.reConstructBinaryTree(rpre, rtin)
return root
def preorder(self, pRoot):
if pRoot is None:
return
print(pRoot.val, end=" ")
self.preorder(pRoot.left)
self.preorder(pRoot.right)
def inorder(self, pRoot):
if pRoot is None:
return
self.inorder(pRoot.left)
print(pRoot.val, end=" ")
self.inorder(pRoot.right)
if __name__ == '__main__':
S = Solution()
pre = [1, 2, 4, 7, 3, 5, 6, 8]
tin = [4, 7, 2, 1, 5, 3, 8, 6]
root = S.reConstructBinaryTree(pre, tin)
S.preorder(root)
print()
S.inorder(root)
05 用两个栈实现队列
题目描述
用两个栈来实现一个队列,完成队列的Push和Pop操作。 队列中的元素为int类型。
解题思路
代码
# -*- coding:utf-8 -*-
# 用两个栈来实现一个队列,完成队列的Push和Pop操作。 队列中的元素为int类型。
class Solution:
def __init__(self):
self.stack1 = []
self.stack2 = []
def push(self, node):
self.stack1.append(node)
def pop(self):
# stack2非空
if len(self.stack2):
return self.stack2.pop()
# stack2是空的,把stack1中的元素全部压入stack2中
while self.stack1:
self.stack2.append(self.stack1.pop())
# 判断stack2是否是空的,非空则输出,空则return
if self.stack2:
return self.stack2.pop()
else:
return
if __name__ == '__main__':
S = Solution()
S.push(1)
print(S.pop())
print(S.pop())
06 旋转数组的最小数字
题目描述
把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。 输入一个非递减排序的数组的一个旋转,输出旋转数组的最小元素。 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。 NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。
解题思路
代码
# -*- coding:utf-8 -*-
# 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。
# 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素。
# 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。
# NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。
class Solution:
def MininOrder(self, rotateArray, left, right):
res = rotateArray[left]
for i in range(left, right + 1):
if res > rotateArray[i]:
res = rotateArray[i]
def minNumberInRotateArray(self, rotateArray):
lenArr = len(rotateArray)
left, right = 0, lenArr - 1
while left <= right:
if right - left == 1:
return rotateArray[right] # 下标相差为1时,直接输出右值
mid = (left + right) // 2
if rotateArray[left] == rotateArray[mid] and rotateArray[mid] == rotateArray[right]:
return self.MininOrder(rotateArray, left, right) # 无法判断最小值在那一边,进行暴力查找
if rotateArray[mid] >= rotateArray[left]: # 中间值大于左值,最小值在右边,2345671,5>2
left = mid
elif rotateArray[mid] <= rotateArray[right]: # 中间值小于右值,最小值在左边,5671234,1<4
right = mid
return rotateArray[right]
if __name__ == '__main__':
S = Solution()
list = [5, 6, 7, 1, 2, 3, 4]
print(S.minNumberInRotateArray(list))
07 斐波拉契数列
题目描述
大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0)。
n<=39
解题思路
代码
# -*- coding:utf-8 -*-
# 大家都知道斐波那契数列,现在要求输入一个整数n,
# 请你输出斐波那契数列的第n项(从0开始,第0项为0)
class Solution:
def Fibonacci(self, n):
if n == 0:
return 0
if n == 1 or n == 2:
return 1
memories = [1, 1]
for i in range(n - 2):
memories.append(memories[-1] + memories[-2])
return memories[-1]
S = Solution()
print(S.Fibonacci(50))
08 跳台阶
题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
解题思路
代码
# -*- coding:utf-8 -*-
# 一只青蛙一次可以跳上1级台阶,也可以跳上2级。
# 求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
class Solution:
def jumpFloor(self, number):
if number == 1 or number == 2:
return number
dp = [1, 2]
for i in range(number - 2):
dp.append(dp[-1] + dp[-2])
return dp[-1]
S = Solution()
print(S.jumpFloor(50))
09 变态跳台阶
题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
解题思路
代码
# -*- coding:utf-8 -*-
# 一只青蛙一次可以跳上1级台阶,也可以跳上2级。
# 求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
class Solution:
def jumpFloor(self, number):
if number == 1 or number == 2:
return number
ret = sum_ = 3
for i in range(number - 2):
ret = sum_ + 1
sum_ += ret
return ret
S = Solution()
print(S.jumpFloor(3))
10 矩形覆盖
题目描述
我们可以用2x1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2x1的小矩形无重叠地覆盖一个2xn的大矩形,总共有多少种方法?
解题思路
代码
# -*- coding:utf-8 -*-
# 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。
# 请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
class Solution:
def rectCover(self, number):
if number == 0 or number == 1 or number == 2:
return number
dp = [1, 2]
for i in range(number - 2):
dp.append(dp[-1] + dp[-2])
return dp[-1]
S = Solution()
print(S.rectCover(8))
11 二进制中1的个数
题目描述
输入一个整数,输出该数二进制表示中1的个数。其中负数用补码表示。
解题思路
代码
# -*- coding:utf-8 -*-
# 输入一个整数,输出该数二进制表示中1的个数。其中负数用补码表示。
class Solution:
def NumberOf1(self, n):
return bin(n & 0xffffffff).count('1')
S = Solution()
print(S.NumberOf1(100))
12 数值的整数次方
题目描述
给定一个double类型的浮点数base和int类型的整数exponent。求base的exponent次方。保证base和exponent不同时为0
解题思路
代码
# -*- coding:utf-8 -*-
# 给定一个double类型的浮点数base和int类型的整数exponent。
# 求base的exponent次方。
# 需要注意的地方:
# 当指数为负数的时候
# 当底数为零切指数为负数的情况
# 在判断底数base是不是等于0的时候,不能直接写base==0, 因为计算机内表示小数时有误差,
# 只能判断他们的差的绝对值是不是在一个很小的范围内
# 当n为偶数, a^n = a^(n/2) * a^(n/2)
# 当n为奇数, a^n = a^((n-1)/2) * a^((n-1)/2)) * a
# 利用右移一位运算代替除以2
# 利用位与运算代替了求余运算法%来判断一个数是奇数还是偶数
# 优化代码速度
class Solution:
def Power(self, base, exponent):
if exponent == 0:
return 1
if exponent == 1:
return base
if exponent == -1:
return 1 / base
result = self.Power(base, exponent >> 1)
result *= result
if exponent & 0x1 == 1:
result *= base
return result
if __name__ == '__main__':
S = Solution()
print(S.Power(4.56, 6))
13 调整数组顺序使奇数位于偶数前面
题目描述
输入一个整数数组,实现一个函数来调整该数组中数字的顺序,使得所有的奇数位于数组的前半部分,所有的偶数位于数组的后半部分,并保证奇数和奇数,偶数和偶数之间的相对位置不变。
解题思路
代码
# -*- coding:utf-8 -*-
# 输入一个整数数组,实现一个函数来调整该数组中数字的顺序,
# 使得所有的奇数位于数组的前半部分,所有的偶数位于数组的后半部分,
# 并保证奇数和奇数,偶数和偶数之间的相对位置不变。
class Solution:
def reOrderArray(self, array):
even, odd = [], []
for i in array:
if i % 2 == 0:
odd.append(i)
else:
even.append(i)
return even + odd
class Solution1:
def reOrderArray(self, array):
size = len(array)
pos = size - 1
cnt = 0
while cnt < size:
if array[pos] % 2 == 1:
tmp = array[pos]
for i in range(pos - 1, -1, -1):
array[i + 1] = array[i]
array[0] = tmp
else:
pos -= 1
cnt += 1
return array
if __name__ == '__main__':
S = Solution()
a = [1, 2, 3, 4, 5, 6, 7, 8]
print(S.reOrderArray(a))
14 链表中倒数第k个结点
题目描述
输入一个链表,输出该链表中倒数第k个结点。
解题思路
代码
# -*- coding:utf-8 -*-
class ListNode:
def __init__(self, x):
self.val = x
self.next = None
class Solution:
def FindKthToTail(self, head, k):
if head == None :
return
p1 = p2 = head
for i in range(k):
if p2 == None:
return
p2 = p2.next
while p2:
p2 = p2.next
p1 = p1.next
return p1
if __name__ == '__main__':
n0 = ListNode(0)
n1 = ListNode(1)
n2 = ListNode(2)
n3 = ListNode(3)
n4 = ListNode(4)
n0.next = n1
n1.next = n2
n2.next = n3
n3.next = n4
S = Solution()
print(S.FindKthToTail(n0, 2).val)
15 反转链表
题目描述
输入一个链表,反转链表后,输出新链表的表头。
解题思路
代码
# -*- coding:utf-8 -*-
# 输入一个链表,反转链表后,输出新链表的表头。
class ListNode:
def __init__(self, x):
self.val = x
self.next = None
class Solution:
def ReverseList(self, pHead):
head = None
while pHead:
tmp = ListNode(pHead.val)
tmp.next = head
head = tmp
pHead = pHead.next
return head
def ReverseList_r(self, pHead):
if pHead == None or pHead.next == None:
return pHead
p = self.ReverseList_r(pHead.next)
pHead.next.next = pHead
pHead.next = None
return p
def travel_list(self, pHead):
while pHead:
print(pHead.val, end=' ')
pHead = pHead.next
if __name__ == '__main__':
n0 = ListNode(0)
n1 = ListNode(1)
n2 = ListNode(2)
n3 = ListNode(3)
n4 = ListNode(4)
n0.next = n1
n1.next = n2
n2.next = n3
n3.next = n4
S = Solution()
S.travel_list(S.ReverseList(n0))
16 合并两个或k个有序链表
题目描述
输入两个单调递增的链表,输出两个链表合成后的链表,当然我们需要合成后的链表满足单调不减规则。
解题思路
代码
# -*- coding:utf-8 -*-
class ListNode:
def __init__(self, x):
self.val = x
self.next = None
class Solution:
def Merge(self, pHead1, pHead2):
res = ListNode(0)
tmp = res
p1 = pHead1
p2 = pHead2
while p1 and p2:
if p1.val < p2.val:
tmp.next = p1
p1 = p1.next
else:
tmp.next = p2
p2 = p2.next
tmp = tmp.next
if p1:
tmp.next = p1
if p2:
tmp.next = p2
return res.next
def travel_list(self, pHead):
while pHead:
print(pHead.val, end=' ')
pHead = pHead.next
if __name__ == '__main__':
n0 = ListNode(0)
n1 = ListNode(1)
n2 = ListNode(2)
n3 = ListNode(3)
n4 = ListNode(4)
n0.next = n1
n1.next = n2
n2.next = n3
n3.next = n4
m0 = ListNode(0)
m1 = ListNode(1)
m2 = ListNode(2)
m3 = ListNode(3)
m4 = ListNode(4)
m0.next = m1
m1.next = m2
m2.next = m3
m3.next = m4
S = Solution()
S.travel_list(n0)
S.travel_list(pHead=S.Merge(n0, m0))
17 树的子结构
题目描述
输入两棵二叉树A,B,判断B是不是A的子结构。(ps:我们约定空树不是任意一个树的子结构)
解题思路
代码
# -*- coding:utf-8 -*-
# 输入两棵二叉树A,B,判断B是不是A的子结构。(ps:我们约定空树不是任意一个树的子结构)
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class Solution:
def HasSubtree(self, pRoot1, pRoot2):
def subtree(pRoot1, pRoot2):
if pRoot1 == None and pRoot2 == None:
return True
if pRoot1 == None:
return False
if pRoot2 == None:
return False
if pRoot2.val == pRoot1.val:
if pRoot2.left == None and pRoot2.right == None:
return True
if subtree(pRoot1.left, pRoot2.left) and subtree(pRoot1.right, pRoot2.right):
return True
return subtree(pRoot1.left, pRoot2) or subtree(pRoot1.right, pRoot2)
if pRoot1 == None and pRoot2 == None:
return False
return subtree(pRoot1, pRoot2)
if __name__ == '__main__':
S = Solution()
root = TreeNode(0)
node0 = TreeNode(1)
node1 = TreeNode(2)
node2 = TreeNode(3)
node3 = TreeNode(4)
node4 = TreeNode(5)
node5 = TreeNode(6)
root.left = node0
root.right = node1
node0.left = node2
node0.right = node3
node1.left = node4
node1.right = node5
# subtree
node6 = TreeNode(1)
node7 = TreeNode(3)
node8 = TreeNode(5)
node6.left = node7
node6.right = node8
print(S.HasSubtree(root, node6))
18 二叉树的镜像
题目描述
操作给定的二叉树,将其变换为源二叉树的镜像。
输入描述:
二叉树的镜像定义:源二叉树
8
/ \
6 10
/ \ / \
5 7 9 11
镜像二叉树
8
/ \
10 6
/ \ / \
11 9 7 5
解题思路
代码
# coding:utf-8
# 操作给定的二叉树,将其变换为源二叉树的镜像
class Node(object):
"""定义节点数据类型"""
def __init__(self, item):
self.elem = item
self.lchild = None
self.rchild = None
class Tree(object):
"""二叉树"""
def __init__(self):
self.root = None
def add(self, item):
node = Node(item)
if self.root is None:
self.root = node
return
queue = [self.root]
while queue:
cur_node = queue.pop(0)
if cur_node.lchild is None:
cur_node.lchild = node
return
else:
queue.append(cur_node.lchild)
if cur_node.rchild is None:
cur_node.rchild = node
return
else:
queue.append(cur_node.rchild)
def breadth_travel(self):
"""广度遍历"""
if self.root is None:
return
queue = [self.root]
while queue:
cur_node = queue.pop(0)
print(cur_node.elem, end=" ")
if cur_node.lchild is not None:
queue.append(cur_node.lchild)
if cur_node.rchild is not None:
queue.append(cur_node.rchild)
def preorder(self, node):
"""先序遍历"""
if node is None:
return
print(node.elem, end=" ")
self.preorder(node.lchild)
self.preorder(node.rchild)
def inorder(self, node):
"""中序遍历"""
if node is None:
return
self.inorder(node.lchild)
print(node.elem, end=" ")
self.inorder(node.rchild)
def postorder(self, node):
"""后序遍历"""
if node is None:
return
self.postorder(node.lchild)
self.postorder(node.rchild)
print(node.elem, end=" ")
def Mirror(self, root):
if root == None:
return
self.Mirror(root.lchild)
self.Mirror(root.rchild)
root.lchild, root.rchild = root.rchild, root.lchild
if __name__ == "__main__":
tree = Tree()
tree.add(0)
tree.add(1)
tree.add(2)
tree.add(3)
tree.add(4)
tree.add(5)
tree.add(6)
tree.add(7)
tree.add(8)
tree.add(9)
tree.breadth_travel()
print(" ")
tree.preorder(tree.root)
print(" ")
tree.inorder(tree.root)
print(" ")
tree.postorder(tree.root)
print(" ")
tree.Mirror(tree.root)
tree.breadth_travel()
19 顺时针打印矩阵
题目描述
输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字,例如,如果输入如下4 X 4矩阵: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 则依次打印出数字1,2,3,4,8,12,16,15,14,13,9,5,6,7,11,10.
解题思路
代码
# -*- coding:utf-8 -*-
# 输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字,
# 例如,如果输入如下4 X 4矩阵: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# 则依次打印出数字1,2,3,4,8,12,16,15,14,13,9,5,6,7,11,10
class Solution:
# matrix类型为二维列表,需要返回列表
def printMatrix(self, matrix):
printArr = []
if matrix == None:
return
if matrix == []:
return []
start = 0 # 每次循环的起点
rows = len(matrix) # 行数
columns = len(matrix[0]) # 列数
while columns > 2 * start and rows > 2 * start:
endX = columns - 1 - start
endY = rows - 1 - start
# 从左到右将数字存入printArr
for i in range(start, endX + 1):
number = matrix[start][i]
printArr.append(number)
# 从上到下将数字存入printArr
if start < endY:
for i in range(start + 1, endY + 1):
number = matrix[i][endX]
printArr.append(number)
# 从右到左将数字存入printArr
if start < endX and start < endY:
for i in range(endX - 1, start - 1, -1):
number = matrix[endY][i]
printArr.append(number)
# 从下到上将数字存入printArr
if start < endX and start < endY - 1:
for i in range(endY - 1, start, -1):
number = matrix[i][start]
printArr.append(number)
start += 1
return printArr
if __name__ == "__main__":
S = Solution()
print(S.printMatrix([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]))
20 包含min函数的栈
题目描述
定义栈的数据结构,请在该类型中实现一个能够得到栈中所含最小元素的min函数(时间复杂度应为O(1))。
解题思路
代码
# -*- coding:utf-8 -*-
class Solution:
def __init__(self):
self.stack = []
self.minstack = []
self.minm = float('inf')
def push(self, node):
self.stack.append(node)
if node < self.minm:
self.minm = node
self.minstack.append(self.minm)
def pop(self):
if self.stack != []:
if self.stack[-1] == self.minm:
self.minstack.pop()
self.stack.pop()
def top(self):
if self.stack != []:
return self.stack[-1]
else:
return None
def min(self):
return self.minstack[-1]
if __name__ == '__main__':
S = Solution()
S.push(2)
S.push(1)
S.push(3)
S.push(4)
S.push(5)
print(S.top())
print(S.min())
21 栈的压入、弹出序列
题目描述
输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否可能为该栈的弹出顺序。假设压入栈的所有数字均不相等。例如序列1,2,3,4,5是某栈的压入顺序,序列4,5,3,2,1是该压栈序列对应的一个弹出序列,但4,3,5,1,2就不可能是该压栈序列的弹出序列。(注意:这两个序列的长度是相等的)
解题思路
代码
# -*- coding:utf-8 -*-
# 输入两个整数序列,第一个序列表示栈的压入顺序,
# 请判断第二个序列是否可能为该栈的弹出顺序。
# 假设压入栈的所有数字均不相等。
# 例如序列1,2,3,4,5是某栈的压入顺序,
# 序列4,5,3,2,1是该压栈序列对应的一个弹出序列,
# 但4,3,5,1,2就不可能是该压栈序列的弹出序列。
# (注意:这两个序列的长度是相等的)
class Solution:
def IsPopOrder(self, pushV, popV):
stack = []
for i in pushV:
stack.append(i)
while stack and stack[-1] == popV[0]:
stack.pop()
popV.pop(0)
return True if not stack else False
if __name__ == '__main__':
S = Solution()
print(S.IsPopOrder([1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6]))
22 从上往下打印二叉树
题目描述
从上往下打印出二叉树的每个节点,同层节点从左至右打印。
解题思路
代码
# -*- coding:utf-8 -*-
# 从上往下打印出二叉树的每个节点,同层节点从左至右打印。
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class Solution:
# 返回从上到下每个节点值列表,例:[1,2,3]
def PrintFromTopToBottom(self, root):
# write code here
if root is None:
return []
queue = [root]
res = []
while queue:
cur_node = queue.pop(0)
res.append(cur_node.val)
if cur_node.left is not None:
queue.append(cur_node.left)
if cur_node.right is not None:
queue.append(cur_node.right)
return res
if __name__ == '__main__':
S = Solution()
root = TreeNode(0)
node0 = TreeNode(1)
node1 = TreeNode(2)
node2 = TreeNode(3)
node3 = TreeNode(4)
node4 = TreeNode(5)
node5 = TreeNode(6)
root.left = node0
root.right = node1
node0.left = node2
node0.right = node3
node1.left = node4
node1.right = node5
print(S.PrintFromTopToBottom(root))