python读取excel股票历史数据_python获取涨停板历史数据

获取A股每天的涨停板数据,起始日期和截止日期都可以自定义。

这个数据可以用来后续的大数据分析,比如统计每天涨停板的数目和大盘指数的相关性,涨停打开次数与当日人气的强弱的关系。

点击查看大图

python代码(pyhton2版本,另外最下面有python3版本的代码实现):# -*- coding=utf-8 -*-

import datetime

__author__ = 'Rocky'

'''

http://30daydo.com

Contact: weigesysu@qq.com

'''

# 每天的涨跌停

import urllib2, re, time, xlrd, xlwt, sys, os

import setting

import pandas as pd

import tushare as ts

from setting import LLogger

reload(sys)

sys.setdefaultencoding('gbk')

logger = LLogger('zdt.log')

class GetZDT:

def __init__(self,current):

self.user_agent = "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Ubuntu Chromium/64.0.3282.167 Chrome/64.0.3282.167 Safari/537.36"

# self.today = time.strftime("%Y%m%d")

self.today=current

self.path = os.path.join(os.path.dirname(__file__), 'data')

self.zdt_url = 'http://home.flashdata2.jrj.com.cn/limitStatistic/ztForce/' + self.today + ".js"

self.zrzt_url = 'http://hqdata.jrj.com.cn/zrztjrbx/limitup.js'

self.host = "home.flashdata2.jrj.com.cn"

self.reference = "http://stock.jrj.com.cn/tzzs/z ... ot%3B

self.header_zdt = {"User-Agent": self.user_agent,

"Host": self.host,

"Referer": self.reference}

self.zdt_indexx = [u'代码', u'名称', u'最新价格', u'涨跌幅', u'封成比', u'封流比', u'封单金额', u'最后一次涨停时间', u'第一次涨停时间', u'打开次数',

u'振幅',

u'涨停强度']

self.zrzt_indexx = [u'序号', u'代码', u'名称', u'昨日涨停时间', u'最新价格', u'今日涨幅', u'最大涨幅', u'最大跌幅', u'是否连板', u'连续涨停次数',

u'昨日涨停强度', u'今日涨停强度', u'是否停牌', u'昨天的日期', u'昨日涨停价', u'今日开盘价格', u'今日开盘涨幅']

self.header_zrzt = {"User-Agent": self.user_agent,

"Host": "hqdata.jrj.com.cn",

"Referer": "http://stock.jrj.com.cn/tzzs/zrztjrbx.shtml"

}

def getdata(self, url, headers, retry=5):

req = urllib2.Request(url=url, headers=headers)

for i in range(retry):

try:

resp = urllib2.urlopen(req,timeout=20)

content = resp.read()

md_check = re.findall('summary|lasttradedate',content)

if content and len(md_check)>0:

return content

else:

time.sleep(60)

logger.log('failed to get content, retry: {}'.format(i))

continue

except Exception, e:

logger.log(e)

time.sleep(60)

continue

return None

def convert_json(self, content):

p = re.compile(r'"Data":(.*)};', re.S)

if len(content)<=0:

logger.log('Content\'s length is 0')

exit(0)

result = p.findall(content)

if result:

try:

# print result

t1 = result[0]

t2 = list(eval(t1))

return t2

except Exception,e:

logger.log(e)

return None

else:

return None

def save_to_dataframe(self, data, indexx, choice, post_fix):

engine = setting.get_engine('db_zdt')

if not data:

exit()

data_len = len(data)

if choice == 1:

for i in range(data_len):

data[choice] = data[choice].decode('gbk')

df = pd.DataFrame(data, columns=indexx)

filename = os.path.join(self.path, self.today + "_" + post_fix + ".xls")

if choice == 1:

df[u'今天的日期']=self.today

df.to_excel(filename, encoding='gbk')

try:

df.to_sql(self.today + post_fix, engine, if_exists='fail')

except Exception,e:

logger.log(e)

def storedata(self):

zdt_content = self.getdata(self.zdt_url, headers=self.header_zdt)

logger.log('zdt Content'+zdt_content)

zdt_js = self.convert_json(zdt_content)

self.save_to_dataframe(zdt_js, self.zdt_indexx, 1, 'zdt')

time.sleep(5)

if __name__ == '__main__':

date_list = [datetime.datetime.strftime(i,'%Y%m%d') for i in list(pd.date_range('20170401','20171231'))]

for today in date_list:

if not ts.is_holiday(datetime.datetime.strptime(today,'%Y%m%d').strftime('%Y-%m-%d')):

print today

obj = GetZDT(today)

obj.storedata()

else:

logger.log('Holiday')

python3代码:# -*- coding=utf-8 -*-

__author__ = 'Rocky'

'''

http://30daydo.com

Contact: weigesysu@qq.com

'''

# 每天的涨跌停

import re

import time

import xlrd

import xlwt

import sys

import os

import setting

from setting import is_holiday, DATA_PATH

import pandas as pd

import tushare as ts

from setting import llogger

import requests

from send_mail import sender_139

import datetime

# reload(sys)

# sys.setdefaultencoding('gbk')

logger = llogger(__file__)

class GetZDT:

def __init__(self):

self.user_agent = "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Ubuntu Chromium/64.0.3282.167 Chrome/64.0.3282.167 Safari/537.36"

self.today = time.strftime("%Y%m%d")

self.path = DATA_PATH

self.zdt_url = 'http://home.flashdata2.jrj.com.cn/limitStatistic/ztForce/' + \

self.today + ".js"

self.zrzt_url = 'http://hqdata.jrj.com.cn/zrztjrbx/limitup.js'

self.host = "home.flashdata2.jrj.com.cn"

self.reference = "http://stock.jrj.com.cn/tzzs/z ... ot%3B

self.header_zdt = {"User-Agent": self.user_agent,

"Host": self.host,

"Referer": self.reference}

self.zdt_indexx = [u'代码', u'名称', u'最新价格', u'涨跌幅', u'封成比', u'封流比', u'封单金额', u'最后一次涨停时间', u'第一次涨停时间', u'打开次数',

u'振幅',

u'涨停强度']

self.zrzt_indexx = [u'序号', u'代码', u'名称', u'昨日涨停时间', u'最新价格', u'今日涨幅', u'最大涨幅', u'最大跌幅', u'是否连板', u'连续涨停次数',

u'昨日涨停强度', u'今日涨停强度', u'是否停牌', u'昨天的日期', u'昨日涨停价', u'今日开盘价格', u'今日开盘涨幅']

self.header_zrzt = {"User-Agent": self.user_agent,

"Host": "hqdata.jrj.com.cn",

"Referer": "http://stock.jrj.com.cn/tzzs/zrztjrbx.shtml"

}

def getdata(self, url, headers, retry=5):

for i in range(retry):

try:

resp = requests.get(url=url, headers=headers)

content = resp.text

md_check = re.findall('summary|lasttradedate', content)

if content and len(md_check) > 0:

return content

else:

time.sleep(60)

logger.info('failed to get content, retry: {}'.format(i))

continue

except Exception as e:

logger.info(e)

time.sleep(60)

continue

return None

def convert_json(self, content):

p = re.compile(r'"Data":(.*)};', re.S)

if len(content) <= 0:

logger.info('Content\'s length is 0')

exit(0)

result = p.findall(content)

if result:

try:

# print(result)

t1 = result[0]

t2 = list(eval(t1))

return t2

except Exception as e:

logger.info(e)

return None

else:

return None

# 2016-12-27 to do this

def save_excel(self, date, data):

# data is list type

w = xlwt.Workbook(encoding='gbk')

ws = w.add_sheet(date)

excel_filename = date + ".xls"

# sheet=open_workbook(excel_filenme)

# table=wb.sheets()[0]

xf = 0

ctype = 1

rows = len(data)

point_x = 1

point_y = 0

ws.write(0, 0, u'代码')

ws.write(0, 1, u'名称')

ws.write(0, 2, u'最新价格')

ws.write(0, 3, u'涨跌幅')

ws.write(0, 4, u'封成比')

ws.write(0, 5, u'封流比')

ws.write(0, 6, u'封单金额')

ws.write(0, 7, u'第一次涨停时间')

ws.write(0, 8, u'最后一次涨停时间')

ws.write(0, 9, u'打开次数')

ws.write(0, 10, u'振幅')

ws.write(0, 11, u'涨停强度')

print("Rows:%d" % rows)

for row in data:

rows = len(data)

cols = len(row)

point_y = 0

for col in row:

# print(col)

# table.put_cell(row,col,)

# print(col)

ws.write(point_x, point_y, col)

# print("[%d,%d]" % (point_x, point_y))

point_y = point_y + 1

point_x = point_x + 1

w.save(excel_filename)

def save_to_dataframe(self, data, indexx, choice, post_fix):

engine = setting.get_engine('db_zdt')

if not data:

exit()

data_len = len(data)

if choice == 1:

for i in range(data_len):

data[i][choice] = data[i][choice]

df = pd.DataFrame(data, columns=indexx)

filename = os.path.join(

self.path, self.today + "_" + post_fix + ".xls")

# 今日涨停

if choice == 1:

df['今天的日期'] = self.today

df.to_excel(filename, encoding='gbk')

try:

df.to_sql(self.today + post_fix, engine, if_exists='fail')

except Exception as e:

logger.info(e)

# 昨日涨停

if choice == 2:

df = df.set_index(u'序号')

df[u'最大涨幅'] = df[u'最大涨幅'].map(lambda x: round(x * 100, 3))

df[u'最大跌幅'] = df[u'最大跌幅'].map(lambda x: round(x * 100, 3))

df[u'今日开盘涨幅'] = df[u'今日开盘涨幅'].map(lambda x: round(x * 100, 3))

df[u'昨日涨停强度'] = df[u'昨日涨停强度'].map(lambda x: round(x, 0))

df[u'今日涨停强度'] = df[u'今日涨停强度'].map(lambda x: round(x, 0))

try:

df.to_sql(self.today + post_fix, engine, if_exists='fail')

except Exception as e:

logger.info(e)

avg = round(df['今日涨幅'].mean(), 2)

current = datetime.datetime.now().strftime('%Y-%m-%d')

title = '昨天涨停个股今天{}\n的平均涨幅{}\n'.format(current, avg)

try:

sender_139(title, title)

except Exception as e:

print(e)

# 昨日涨停今日的状态,今日涨停

def storedata(self):

zdt_content = self.getdata(self.zdt_url, headers=self.header_zdt)

logger.info('zdt Content' + zdt_content)

zdt_js = self.convert_json(zdt_content)

self.save_to_dataframe(zdt_js, self.zdt_indexx, 1, 'zdt')

time.sleep(0.5)

zrzt_content = self.getdata(self.zrzt_url, headers=self.header_zrzt)

logger.info('zrzt Content' + zdt_content)

zrzt_js = self.convert_json(zrzt_content)

self.save_to_dataframe(zrzt_js, self.zrzt_indexx, 2, 'zrzt')

if __name__ == '__main__':

# today='2018-04-16'

# 填补以前的数据

# x=pd.date_range('20170101','20180312')

# date_list = [datetime.datetime.strftime(i,'%Y%m%d') for i in list(pd.date_range('20170401','20171231'))

if is_holiday():

logger.info('Holiday')

exit()

logger.info("start")

obj = GetZDT()

obj.storedata()

原创。

转载请注明出处。

http://30daydo.com/article/295

[/i][/i][/code]

欢迎关注公众号:可转债量化分析

<think>好的,我现在需要帮助用户解决如何使用Python和Akshare根据Excel中的可转债正股股票代码筛选可能涨停股票。首先,我得理清楚用户的具体需求。用户有一个Excel文件,里面包含可转债对应的正股股票代码,他们想通过这些代码,利用Akshare获取实时或历史数据,筛选出可能涨停的正股。 首先,我应该考虑步骤分解。通常,这类任务可以分为几个步骤:读取Excel文件中的股票代码、使用Akshare获取股票数据、分析数据以判断涨停可能性、最后输出结果。需要确保每个步骤都正确,并且考虑异常处理,比如网络请求失败或数据格式问题。 接下来,我需要确认Akshare的接口是否支持获取实时的股票涨跌幅数据。Akshare的stock_zh_a_spot接口可以获取实时数据,包含当前价格、涨跌幅等信息。然后,涨停的判断通常是当前价格等于涨停价,或者涨跌幅达到10%(对于大部分A股)。但需要注意,不同板块(如科创板、创业板)的涨停幅度可能不同,但用户提到是A股,且股票代码以60开头,可能主要是沪市主板,所以默认10%的涨停幅度可能适用。 然后是读取Excel文件,用户可能需要使用pandas库读取Excel,处理股票代码。需要确保股票代码格式正确,比如是否需要补全前导零,或者转换为Akshare所需的格式,比如“sh601238”中的sh或sz前缀。但根据引用[2],用户提到处理以60开头的股票代码,可能直接使用6位数字代码,而Akshare的接口可能需要加上市场前缀,比如沪市是sh,深市是sz。但stock_zh_a_spot接口可能只需要6位代码,不需要前缀,需要确认。 另外,用户可能需要处理Excel中的股票代码列,确保读取正确。比如使用pandas的read_excel函数,指定正确的列名或索引。然后,遍历每个股票代码,调用Akshare接口获取数据。 在数据处理部分,获取到实时数据后,需要计算涨停价,或者直接使用接口返回的涨跌幅来判断。如果接口已经提供了涨跌幅,可以直接比较是否接近涨停,比如涨跌幅>=9.9%或等于涨停价。但需要考虑数据更新的频率,实时数据可能有一定的延迟,影响准确性。 此外,用户可能需要考虑其他因素,比如成交量、换手率等,来辅助判断涨停的可能性,但用户的问题可能主要集中在价格方面。因此,核心逻辑是获取实时涨跌幅,判断是否达到涨停。 可能的代码结构包括: 1. 导入必要的库:pandas, akshare, openpyxl(用于读取Excel)。 2. 读取Excel文件中的股票代码,假设列名为“股票代码”或类似,可能需要处理格式,如转换为字符串,补全到6位。 3. 遍历每个股票代码,调用ak.stock_zh_a_spot()获取实时数据。 4. 解析返回的数据,检查涨跌幅是否达到涨停条件。例如,当前涨跌幅是否接近10%(考虑到浮点计算误差,可能用>=9.9%)。 5. 收集符合条件的股票代码,保存到新的Excel文件或输出。 需要注意的是,Akshare的接口可能有访问频率限制,需要适当加入延时,或者使用try-except处理请求异常。此外,股票代码可能需要转换为字符串,避免前面的零被省略。例如,Excel中的代码可能是数字格式,如600001会被读取为整数,需要转为字符串并补全到6位。 另外,根据引用[4],用户可能对Excel操作比较熟悉,代码中涉及到的Excel读写部分需要使用pandas或xlrd/xlwt库,但建议使用pandas,因为它更简便。例如,使用pd.read_excel读取,处理后再用to_excel保存结果。 可能的代码示例: 首先安装必要的库:pip install akshare pandas openpyxl 然后编写代码: import pandas as pd import akshare as ak # 读取Excel中的股票代码 df = pd.read_excel('stock_codes.xlsx') stock_codes = df['股票代码'].astype(str).str.zfill(6).tolist() # 获取实时数据 def get_spot_data(code): try: df = ak.stock_zh_a_spot(symbol=code, adjust="") return df except Exception as e: print(f"获取{code}数据失败:{e}") return None # 筛选可能涨停股票 potential_stocks = [] for code in stock_codes: data = get_spot_data(code) if data is not None and not data.empty: # 假设返回的DataFrame中涨跌幅列为'涨跌幅',单位为百分比 change_percent = data.iloc[0]['涨跌幅'] if change_percent >= 9.9: # 接近涨停 potential_stocks.append({ '股票代码': code, '当前涨跌幅': change_percent, '当前价': data.iloc[0]['最新价'], '涨停价': data.iloc[0]['涨停价'] }) # 转换为DataFrame并保存 if potential_stocks: result_df = pd.DataFrame(potential_stocks) result_df.to_excel('potential_limit_up_stocks.xlsx', index=False) print("筛选完成,结果已保存至potential_limit_up_stocks.xlsx") else: print("未找到可能涨停股票") 需要确认Akshare的stock_zh_a_spot接口返回的列名是否正确,例如涨跌幅是否为'涨跌幅',涨停价是否为'涨停价'。根据Akshare文档,可能需要调整列名。此外,某些股票可能没有涨停价,比如科创板或创业板注册制后的股票,但用户提到的是以60开头的沪市股票,所以适用10%的涨停幅度。 另外,用户可能需要处理网络请求失败的情况,比如添加重试机制或使用异步请求提高效率,但基础版本可能不需要这些复杂处理。 最后,用户可能需要进一步优化筛选条件,例如结合成交量、市场热度等,但根据问题描述,基础条件是根据涨跌幅判断。 总结步骤:读Excel获取实时数据→判断涨跌幅→保存结果。</think>以下是使用Python和Akshare筛选可能涨停的可转债正股的具体步骤: ### 1. 准备工作 - **安装依赖库**: ```bash pip install akshare pandas openpyxl ``` - **Excel文件格式**: - 确保Excel文件中包含名为`股票代码`的列,内容为6位数字(如`600000`) ### 2. 读取股票代码 ```python import pandas as pd # 读取Excel文件,假设列名为"股票代码" df = pd.read_excel("可转债正股列表.xlsx", engine="openpyxl") stock_codes = df["股票代码"].astype(str).str.zfill(6).tolist() # 补全为6位字符串 ``` ### 3. 获取实时数据 ```python import akshare as ak def get_realtime_data(code): try: # 获取实时行情(包含最新价、涨跌幅、涨停价等) df = ak.stock_zh_a_spot(symbol=code, adjust="") return df.iloc[0] if not df.empty else None except Exception as e: print(f"获取{code}数据失败:{str(e)}") return None ``` ### 4. 筛选涨停股票 ```python potential_stocks = [] for code in stock_codes: data = get_realtime_data(code) if data is not None: # 判断条件:当前价格等于涨停价 或 涨跌幅≥9.9% if (data["最新价"] >= data["涨停价"]) or (data["涨跌幅"] >= 9.9): potential_stocks.append({ "股票代码": code, "最新价": data["最新价"], "涨跌幅(%)": data["涨跌幅"], "涨停价": data["涨停价"] }) ``` ### 5. 结果输出 ```python if potential_stocks: result_df = pd.DataFrame(potential_stocks) result_df.to_excel("可能涨停股票.xlsx", index=False) print(f"找到{len(potential_stocks)}只可能涨停股票") else: print("未发现符合条件的股票") ``` ### 代码说明 1. **数据获取**:使用`ak.stock_zh_a_spot()`接口获取实时行情数据[^2] 2. **涨停判断**: - 直接比较最新价与涨停价 - 或通过涨跌幅≥9.9%判断(考虑浮点计算误差) 3. **异常处理**:网络请求添加try-except避免程序中断
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值