计算机控制系统英文版ChaterSamlingandconstruction
* 2.3 Sampling Theorem and Some Problems 2.3.1 Frequency folding phenomena * 2.3 Sampling Theorem and Some Problems 2.3.2 Sampling theorem Theorem 2.1 SHANNON’S SAMPLING THEOREM A continuous-time signal with a Fourier transform that is zero outside the interval (-?max, +?max) is given uniquely by its values in equidistant points if the sampling frequency is higher than 2?max (including 2?max), that is ?s ? 2?max * 2.3 Sampling Theorem and Some Problems 2.3.3 Some problems 1. Sample signal with disturbance Phenomena: In computer-controlled system, if there is disturbance signal (often is in the higher frequency area) in the useful signal, while the sampling period is chosen according to the useful signal, after sampling, the disturbance signal will change to the low-frequency signal and enter the system. We all know that almost all systems are low-pass filters, so the disturbance signal can across the system and later have an effect on the performance. * 2.3 Sampling Theorem and Some Problems Methods: Choose the sampling period according to the disturbance signal; Place a low-pass filter before the sampler which can filter almost all disturbance signals or useful signal with frequency higher than the Nyquist frequency. 2. Aliasing or Frequency Folding Phenomena: Sampling may produce new frequencies. The fundamental alias for a frequency ?1>?N is given by (2.4) * 2.3 Sampling Theorem and Some Problems An illustration of the aliasing effect is shown in Fig. 2.10. Two signals with the frequencies 0.1 Hz and 0.9 Hz are sampled with a frequency of 1 Hz (h=1s). The figure shows that the signals have the same values at the sampling instants. Eq. (2.4) gives that 0.9 has the alias frequency 0.1. * 2.3 Sampling Theorem and Some Problems Methods: To avoid the alias problem, it is necessary to filter the analog signals before sampling so that the signals obtained do not have frequency above the Ny