php两个相差为2的素数,重发系列证明之五:相差2k=6s+2的素数对是无穷多的

重发系列证明之五:相差2k=6s+2的素数对是无穷多的

赵双成

E-mail:13523785824@126.com

摘要:将前n个素数的连乘积表为2N后,分别构建相差2k=6s+2、2k=6s+4、2k=6s的奇数对数列;按2N与2k之间公因子的特征,将奇数对数列分为不同的类型;用系列证明之一中同样的方法,证明各类奇数对数列的奇数对筛定理;用数字筛从各类奇数对数列中筛去一部分奇数对,再依据容斥原理用奇数对筛调整误差,导出剩余素数对个数的近似值公式;最后通过剩余素数对个数的近似值公式,证明相差2k的素数对是无穷多的。

关健词:初等数论;素数对;奇数对数列;数字筛;奇数对筛

0引言

法国数学家阿尔方·德·波利尼亚克(Alphonse de

Polignac)1849年提出对所有自然数k,存在无穷多个素数对(p,p

+ 2k)。

本系列证明的之一、二、三、四已证明了相差2、4、6、8的素数对是无穷多的。

1系列证明之一中的相关内容与定义

将前n个素数p1、p2、p3、p4、…、pn(n≥2)的连乘积表为2N。

在a=qb中,当b与q均为正奇数时,称a是b或q的奇倍数

;b为一个素数,a=qb,在用筛法筛去一些数字时,如a被b最先筛去,称a是b的优奇倍数。

当1≤M≤N/3时,6M±1组成一个N/3项的奇数对数列。6M-1称为小数,6M+1称为大数。以(a/b)的形式表示a,b为同奇数对中的两个数,a,b均为素数时称为孪生素数,否则为合数对。

数字筛是计算前若干个素数连乘积内某个素数优奇倍数个数的公式。前u个素数连乘积内第i个素数的数字筛是:

(p2-1)(p3-1)…(pi-1-1)pi+1…pu=2(p3-1)…(pi-1-1)pi+1…pu(u≥3,2≤i≤u,i+1≤u)本文仍将前n个素数连乘积表为2N,将大于pn且平方不大于2N+6s+1的最大素

数表为pn+t(t≥0);以相差2的奇数对数列作为构建相差2k=6s+2的奇数对数列的

基础,仍以(a/b)的形式表示a,b为同奇数对中的两个数,a,b均为素数时为素数对。

2k与U/3互质时,奇数对数列中的合数仅由其最小素因子筛去一次,其他素因子对该合数均不再重复筛去;2k与U/3有公因子时,在前u个素数连乘积p1p2p3…pnpn+1…pu=2U中,将p3到pn内属于公因子的素数表为gp、不属于公因子的素数表为qp,将pn+1到pn+t内属于公因子的素数表为dp、不属于公因子的素数表为fp,故

2U=p1p2p3…pnpn+1…pu

​=gp1gp2…gpgdp1dp2…dpdqp1qp2…qpqfp1fp2…fpf

(n≥4,t≥1,g≥1,q≥0,g+q=n,d≥1,f≥0,d+f=t)

约定:奇数对数列内的合数同时含素数因子gp、qp、dp、fp时,gp与dp有比qp与fp将该合数筛去的优先权;在都有优先权或都无优先权的素因子内,较小的素数因子有将该合数筛去的优先权。

2相差2k=6s+2(k≥1、n≥3、0≤s≤[Pn/6])的奇数对数列

相差2k=6s+2的奇数对数列为6M-1,6(M+s)+1(1≤M≤N/3)。

∵相差2k=6s+2的奇数对数列中,s=0时2k=2,相差2k=6s+2的奇数对数列即为相差2的奇数对数列。

∴应取s≥0。

又∵当M=N/3时6(M+s)+1=2N+6s+1,且pn+t2≤2N+6s+1,

∴应取s≤[pn+t/6]。

故相差2k=6s+2的奇数对数列可表为

6M-1、6(M+s)+1(1≤M≤N/3,0≤s≤[pn+t/6],n≥3),其项数为N/3个。6M-1称为小数、6(M+s)+1称为大数。当s=0、1、2、3、……、时,相差2k=6s+2的奇

数对数列即为相差2、8、14、20、……的奇数对数列。

∵M=1时6(M+s)+1=6(s+1)+1=6s+7>6s+1,

∴数列不含6h+1(0≤h≤s)。

∵M=N/3-(s-h)时6[N/3-(s-h)+s]+1=2N+(6h+1)是6h+1的优奇倍数,

∴所以数列内p3到pn的优奇倍数的个数仍是:

P3:2P4P5…Pn、

P4:2(P3-1)P5P6…Pn、……、

Pn:2(P3-1)(P4-1)…(Pn-2-1)(Pn-1-1)。

从N/3个相差2k=6s+2的奇数对中减去上述优奇倍数的个数后有

p3p4…pn-2p4p5…pn-2(p3-1)p5…pn-

2(p3-1)(p4-1)p6…pn-………-2(p3-1)…(pn-1-1)

=p3p4…pn-2(p3…pn-1+p3…pn-2pn+…+p4…pn)+

2(p3…pn-2+

p3…pn-3pn-1+…+p5…pn)-…+(-1)n-4

​2(p3p4+

p3p5+…+pn-1pn)+(-1)n-32(p3+p4+…+pn)+(-1)n-22

(1)

把(1)中减去的奇数对表为(a/b),(a/b)被a减去一次又被b减去一次时,(a/b)被减去两次。

3相差2k=6s+2(0≤s≤[pn+t/6],n≥4)的奇数对数列中的奇数对筛

引理1大于3不大于2N+6s+1的奇数中,在6h+1(1≤h≤s)以外的奇数中,1个奇数属于相差2k=6s+2的奇数对数列的充要条件,是该奇数不是3的奇倍数。

证明与系列证明之一中引理2的证明相同。

引理26M-1+A=6M′-1与[6(M+s)+1]+A=6(M′+s)+1的充要条件是A=6m(m>0)

证明与系列证明之一中引理3的证明相同。

定理3(奇数对筛)q、r是相差2k=6s+2的奇数对数列内的两个数,(q,r)=1且qr所含奇素数因子的平方均不大于2N+6s+1。在qr个相差2k=6s+2的连续奇数对内,有且仅有两个奇数对中的数分别为q、r的奇倍数。

证明

∵(q,r)=1,

∴qx-ry=6s+2有整数解,将其最小正整数解表为x0,y0,即qx0+ry0=6s+2。用系列证明之一中奇数对筛证明的同样方法可证明:

x0,y0为奇数时,qx0与ry0,qx0+2qr与ry0+2qr,qx0+4qr与ry0+4qr中必有一对是qr个相差6s+2的连续奇数对中的一个奇数对;

x0,y0为偶数时,qx0+qr与ry0+qr,,qx0+3qr与ry0+3qr,,qx0+5qr与ry0+5qr中必有一对是qr个相差6s+2的连续奇数对中的一个奇数对。

∵qx>ry、qx0>ry0且ry=6M-1,

∴不存在qx0<ry0与q<y0而r≥x0。

又∵q=y0、r=x0时,qx0-ry0=qr-rq=0,

q<y0、r<x0时qx0>qr、ry0>rq,(qx0-qr)-(ry0-qr)qx0=6s+2.

∴也不存在q=y0、r=x0;q<y0、r<x0。

故q与y0、r与x0的大小关系只能有以下两种类型:

y0<q、x0<r;y0≤q、x0>r。

∵y0<q、x0<r时qx<6qr、ry<6qr,

∴用系列证明之一中的同样方法即可证明此时相差6s+2的奇数对筛成立。

又∵y0≤q、x0>r在M=qr时6(M+s)+1=6qr+6s+1>6qr,当qx为6qr+1到6qr+6s+1范围内的奇数时[qx/6qr]=S≥1,

∴此时(S+1)6qr-qx是qr个相差6s+2的连续奇数对内的一个奇数,找到(ry/qx)后,(S+1)6qr-qx与(S+1)6qr-ry即为另一个奇数对,即y0≤q、x0>r时相差6s+2的奇数对筛也成立。

现以例题验正相差6s+2的奇数对筛与客观事实相符。

例16s+2=20,q=5,r=7,qr=35,6qr=210,(5/25)到(209/229)共35

个相差20的连续奇数对。

5与7不是相差20的奇数对数列中的一个奇数对。

5×11-7×5=55-35=20,210-35=175=7×25、210-55=155=5×31。

在35个相差20的连续奇数对内只有(35/55)和(175/155)这两个奇数对由5和7的奇倍数组成。

例26s+2=62,q=67,r=5,qr=335,6qr=2010,(5/67)到(2009/2071)共335个相

差62的连续奇数对。

67-5=62,(2010-5)-(2010-67)=2005-1943=62,在335个相差62的连续奇数对内只有(5/67)和(2005/1943)这两个奇数对由5和67的奇倍数组成。

例36s+2=62,q=7,r=5,qr=35,6qr=210,(5/67)到(209/271)共35个相差62

的连续奇数对。

5与7不是相差62的奇数对数列中的一个奇数对。

7×11-5×3=62,(77+4×35)-(15+4×35)=217-155=62;[217/210]=1=S,420-217=203、420-155=265,265-203=62。

在35个相差62的连续奇数对内只有(217/155)和(203/265)这两个奇数对由5和7的奇倍数组成。

例46s+2=62,q=7,r=65,qr=455,6qr=2730,,(5/67)到(2729/2791)共455

个相差62的连续奇数对。

7与65不是相差62的奇数对数列中的一个奇数对。

7×46-65×4=62,

322+3×455=1687、260+3×455=1625,1687-1625=62;2730-1687=1043、2730-1625=1105,1105-1043=62。

在455个相差62的连续奇数对内只有(1687/1625)和(1043/1105)这两个奇数对由7和65的奇倍数组成。

由例3已知q=7,r=5,qr=35,6qr=210时,在35个相差62的连续奇数对内只有(217/155)和(203/265)这两个奇数对由5和7的奇倍数组成。455个相差62的连续奇数对均分为13个连续奇数对组后,每组均有35个连续奇数对。将(217/155)和(203/265)中的各个数分别依次加210后,所得到的和即为各组内由5和7的奇倍数组成的奇数对,他们是:

(155/217)与(265/203),

(365/427)与(475/413),

(575/637)与(685/623),      (785/847)与(895/833),

(995/1057)与(1105/1043),

(1205/1267)与(1315/1253),

(1415/1477)与(1525/1463),

(1625/1687)与(1735/1673),

(1835/1897)与(1945/1883),

(2045/2107)与(2155/2093),

(2255/2317)与(2365/2303),

(2465/2527)与(2575/2513),

(2675/2737)与(2785/2723)。

例56s+2=662,q=7,r=65,qr=455,6qr=2730,(5/667)到(2729/3391)共455

个相差662的连续奇数对。

7与65不是相差662的奇数对数列中的一个奇数对。

7×141-65×5=987-325=662,

987+2×455=1897、325+2×455=1235,1897-1235=662;2730-1897=833、2730-1235=1495,1495-833=662。

在455个相差662的连续奇数对内只有(1897/1235)和(833/1495)这两个奇数对由7和65的奇倍数组成。

4

剩余相差2k=6s+2的奇数对个数的公式

4.1

当(N/3,2k)=1时

定理4

(N/3,2k)=1时,剩余相差2k=6s+2的奇数对个数的公式为

(p3-2)(p4-2)…(pn-1-2)(n≥3)(2)

与系列证明之一中剩余相差2的奇数对个数公式的证明同理可知定理4成立。

4.2

当(N/3,2k)=gp1gp2…gpg(g≥1)时,即p3p4…pn中某些奇素数因子为2k与N/3的公因子。将这些公因子表为gp1、gp2、…、gpg(g≥1),p3p4…pn中不是公因子的奇素数表为qp1、qp2、…、qpq(q≥0),于是有

p3p4…pn=gp1gp2…gpgqp1qp2…qpq(n≥3,g≥1,q≥0,g+q=n)

gp1…gpjqp1…qpk中各奇素数在相差2k=6s+2的奇数对数列内优奇倍数的个数为

gp1:2gp2…gpgqp1qp2…qpq,

gp2:2(gp1-1)gp3…gpgqp1qp2…qpq,……,

gpg:2(gp1-1)(gp2-1)…(gpg-1-1)qp1qp2…qpq

qp1:2(gp1-1)(gp2-1)…(gpg-1-1)(gpg-1)qp2…qpq

qp2:2(gp1-1)(gp2-1)…(gpg-1-1)(gpg-1)(qp1-1)qp3…qpq

,……,

qpq:2(gp1-1)(gp2-1)…(gpg-1-1)(gpg-1)(qp1-1)(qp2-1)…(qpq-1-1)

例6N/3=5×7×11×13×17=85085中如11、17是N/3与2k的公因子,5、7、11、13、17不大于2N=510510的优奇倍数的个数分别是:

11为2×17×5×7×13=15470,

17为2(11-1)5×7×13=9100,

5为2(11-1)(17-1)7×13=29160,

7为2(11-1)(17-1)(5-1)13=16640

13为2(11-1)(17-1)(5-1)(7-1)=9600。

定理5

(N/3,2k)=gp1gp2…gpg(g≥1)时,剩余相差2k=6s+2的奇数对个数的公式为(gp1-1)(gp2-1)

…(gpg

-1)(qp1-2)(qp2-2)…(qpq

-2)(g≥1,q≥0)  (3)

证明

在N/3=gp1gp2…gpgqp1gp2…qpq中gp1≤gpj≤gpg(1≤j≤g),(a/b)是相差2k=6s+2的奇数对数列中的任一个奇数对,在a是gpj的优奇倍数时如gpj|2k,

∵b=a+2k,

∴gpj|b,即(a/b)中的两个奇数都是gpj的优奇倍数。

∵gpj的优奇倍数的个数为2(gp1-1)(gp2-1)…(gpj-1-1)gpj+1…gpgqp1qp2…qpq,

∴gpj的优奇倍数在相差2k=6s+2的N/3个奇数对中筛去的奇数对为

(gp1-1)(gp2-1)…(gpj-1-1)gpj+1…gpgqp1qp2…qpq个,于是有:

gp1gp2…gpgqp1qp2…qpq-gp2…gpgqp1qp2…qpq

​-(gp1-1)gp3…gpgqp1qp2…qpq

-(gp1-1)(gp2-1)gp4…gpgqp1qp2…qpq-…

-(gp1-1)(gp2-1)…(gpg-1-1)qp1qp2…qpq

=[gp1gp2…gpg-(gp1+gp2-1)gp3…gpg-(gp1-1)(gp2-1)gp4…gpg

-…-(gp1-1)(gp2-1)…(gpg-1-1)]qp1qp2…qpq

=[gp1gp2…gpg-(gp1gp2+gp1gp3+gp2gp3-gp1-gp2-gp3+1)gp4…gpg

-…-(gp1-1)(gp2-1)…(gpg-1-1)]qp1qp2…qpq

=…………………………………………………………

={gp1gp2…gpg-[(gp1gp2…gpg-2+gp1…gpg-3gpg-1+…+gp2…gpg-1)

-(gp1gp2…gpg-3+gp1…gpg-4gpg-2+…+gp3…gpg-1)+…+(-1)g-3

(gp1+gp2+…+

gpg-1)+(-1)g-2]gpg-(gp1-1)(gp2-1)…(gpg-1-1)}qp1qp2…qpq

=[gp1gp2…gpg-(gp1gp2…gpg-1+gp1…gpg-2gpg+…+gp2…gpg)

+(gp1gp2…gpg-2+gp1…gpg-3gpg-1+…+gp3…gpg)-…+

(-1)g-2(gp1+gp2+…+gpg)+(-1)g]qp1qp2…qpq

=(gp1-1)(gp2-1)…(gpg-1)qp1qp2…qpq(4)

在剩余的(gp1-1)(gp2-1)…(gpg

-1)qp1qp2…qpq个相差2k=6s+2的奇数对中,已不含gp1gp2…gpg中的任一因子,从其中筛去含qp1、qp2、…、qpq的优奇倍数的奇数对后为

(gp1-1)(gp2-1)…(gpg-1)qp1qp2…qpq-2(gp1-1)…(gpg-1)qp2…qpq

-2(gp1-1)…(gpg-1)(qp1-1)qp3…qpq–………-

2(gp1-1)…(gpg-1)(qp1-1)(qp2-1)…(qpq-1-1)

=(gp1-1)(gp2-1)…(gpg-1)[qp1qp2…qpq-2(qp1+qp2-1)qp3…qpq-

2(qp1-1)(qp2-1)qp4…qpq-…-2(qp1-1)(qp2-1)…(qpq-1-1)]

=…………………………………………………………

=(gp1-1)(gp2-1)…(gpg-1)[qp1qp2…qpq

-2(qp1qp2…qpq-1+qp1…qpq-2qpq+…+qp2…qpq)

+2(qp1qp2…qpq-3+qp1…qpq-4qpq-2+…+qp3…qpq-1)

-…+(-1)q-2(qp1+qp2+…+qpq)+(-1)q]

(5)

(a/b)为(5)中筛去的奇数对,如a与b是qp1、qp2、…、qpq中不同奇素数的优奇倍数,(a/b)被筛去了两次。用系列证明之一导出剩余相差2的奇数对个数公式的同样方法,由(5)即可导出定理5成立。

例72N=2×3×5×7=210时,平方倍大于210的最大素数是13,

在相差50的奇数对数列内5整除50,按(3)计算剩余相差50的奇数对为

(5-1)(7-2)=20(个),实剩余奇数对也是20个。他们是:

(11/61)、(17/67)、

(23/73)、

(29/79)、

( 47/97)、

(53/103)、

(59/109)、(71/121)、(89/139)、(101/151)、(107/157)、(113/163)、(131/181)、(137/187)、(143/193)、(149/199)、(173/223)、179/229)、(191/241)、(197/247)。

其中素数对17个,合数对3个。3个合数对是:

(71/121),121=11×11;(143/193),143=11×13;(137/187),187=11×17。

例82N=

2×3×5×7×11=2310时,在相差50的奇数对数列内5整除50,按(3)计算剩余奇数对是(5-1)(7-2)(11-2)=180(个),实剩余奇数对也是180个,其中素数对90个、合数对90个。

例92N=2×3×5×7×11=2310时,在相差14的奇数对数列内7整除14,按(3)计算剩余奇数对是(7-1)(5-2)(11-2)=162(个)实剩余奇数对也是162个,其中素数对82个、合数对80个。

5剩余相差2k=6s+2的素数对个数的近似值公式

不存在大于pn且平方不大于2N的素数时,按定理4、5计算出的剩余奇数对全为素数对。有大于pn且平方不大于2N的素数时,将其个数表为t(n≥4,t≥1),令u=n+t,2U=p1p2p3…pnpn+1…pu。

5.1

定理6  (U

/3,2k)=1时,剩余相差2k=6s+2的素数对个数的近似值公式为

(P3-2)(P4-2)…(Pn-2)…(Pn+t-2)/Pn+1Pn+2…Pn+t(n≥3、t≥0)(6)

用证明之一中证明相差2的数素数对个数近似值计算公式的同样方法即可证明定理6成立,且n趋向无穷大时(6)式也趋向于无穷大。

5.2

当(U/3,2k)=gp1gp2…gpgdp1dp2…dpd(g≥1,d≥0)时,即p3p4…pn中某些奇素数因子和pn+1pn+2…pn+t中某些奇素数因子为2k与U/3的公因子。将这些公因子表为gp1gp2…gpg(g≥1)与dp1dp2…dpd(d≥0),不是U/3与2k公因子的素数表为qp1gp2…qpq(q≥0)与fp1fp2…fpf(f≥0)(d、f不同时为0),于是有

U/3=gp1gp2…gpgqp1qp2…qpqdp1dp2…dpdfp1fp2…fpf

(n≥4,g≥1,q≥0,g+q=n,t≥1, d≥1,f≥0,d+f=t)。

用本证明中推导(4)的同样办法,从U/3个相差2k=6s+2的素数对筛去含gp1、…、gpg、dp1、…、dpd因子的奇数对后可得

(gp1-1)…(gpj-1)(sp1-1)…(sps-1)qp1qp2…qpqfp1p2…fpf。(7)

定理7

(U/3,2k)=gp1gp2…gpgdp1dp2…dpd(g≥1,d≥0)时,剩余相差2k=6s+2的素数对个数的近似值公式为

(gp1-1)…(gpg-1)(dp1-1)…(dpd-1)(qp1-2)…(qpq-2)(fp1-2)…(fpf-2)/

pn+1pn+2…pn+t(n≥4,g≥1,q≥0,g+q=n,t≥1,u=n+t,d≥0,f≥0,g+f=t)(8)

由(7)用证明之一中推导相差2的数素数对个数近似值计算公式的同样方法,即可证明定理7成立。

例102N=2×3×5×7=210时,大于7且平方不大于210的最大素数是13,[13/6]=2,0≤s≤2,s=2时,按(8)计算此相差14的奇数对数列剩余素数对个数的近似值是

(7-1)(5-2)(11-2)(13-2)/11×13=162/13≈12(个),实剩余素数对是14个,他们是(17/31)、(23/37)、(29/43)、(47/61)、(53/67)、(59/73)、(83/97)、(89/103)、(113/127)、(137/151)、(149/163)、(167/181)、(179/193)、(197/211)。

例112N=2×3×5×7×11×13=30030时,平方不大于30030的最大素数是173,

[173/6]=28,故0≤s≤28

s=0时,按(6)计算此相差2的奇数对数列剩余素数对个数的近似值是

(5-2)(7-2)(11-2)(13-2)(17-2)

)(19-2)…(173-2))/17×19×23×…×173

≈456(个),实剩余相差2的素数对也是456个。

s=28时,按(8)计算此相差170的奇数对数列剩余素数对个数的近似值是

(5-1)(17-1)(7-2)(11-2)(13-2)

)(19-2)…(173-2))/17×19×23×…×173

≈649(个),实剩余相差170的素数对也是649个。

6   结论

引理8

6s+1<2pn+t。

证明

∵pn+t为奇数而6为偶数且pn+t大于7,

∴6不能整除pn+t,且有1≤余数≤5。

∵s≤[pn+t/6],

∴6s+1≤6[pn+t/6]+1<2pn+t。

定理9相差2k=6s+2(0≤s≤[pn+t/6])的素数对是无穷多的

证明

由系列证明之一已知2N>pn2,将平方不大于2N+6s+1的最大素数表为pn+t(t≥1)。

∵2N+6s+1≥pn+t2(n≥4,t≥1),

∴N≥(pn+t2-6s-1)/2。

(gp1-1)…(gpg-1)(dp1-1)…(dpd-1)(qp1-2)…

(qpq-2)(fp1-2)…(fpf-2)/pn+1pn+2…pn+t*1pn+t

>p2p3…pn

pn+1pn+2…pn+t-1/pn+1pn+2…pn+t=p2p3…pn/pn+t

=N/pn+t≥(pn+t2-6s-1)/2pn+t=pn+t/2-(6s+1)/2pn+t

>pn/2-

pn+t/2pn+t>pn/2-1。

①、n=9时,pn/2-1=23/2-1>10>9

②、设n=k,pk/2-1>k(k≥9);

n=k+1,pk+1/2-1≥(pk+2)/2-1=(

pk/2-1)+1>k+1。

由①、②可知:对任意的n≥9均有pn/2-1>n。因素数是无穷多的,n趋向无穷大时pn/2-1也趋向无穷大,进而(8)必更趋向无穷大。

至此,相差2k=6s+2(0≤s≤[pn+t/6])的素数对是无穷多的证明完毕。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值