摘要:频谱占用率预测允许认知无线电次级用户进一步利用频谱。频谱感知测量中的时间相关性可以用来预测主要的用户活动模式。在适用的情况下,与单用户(局部)频谱预测相比,协作频谱预测具有提高预测精度的潜力。本文提出了基于软融合的协作频谱占用率预测的概念和方法.仿真结果表明,预测误差明显优于局部预测和基于硬融合的频谱预测。
1 引言
统计频谱占用率预测 (SOP )在动态频谱访问(DSA )系统重新利用通过频谱感知获得的信息来预测潜在的频谱占用模式。使用频谱预测决策可以优化传感调度、信道选择和主动切换.SOP模型通常基于泊松过程、线性回归、神经网络和空间向量机。
有限状态马尔可夫机(FSM)是局部频谱建模文献的重要组成部分。基于有限状态机(FSM)的单用户局部预测器可以提前一步估计可用时隙的概率。协作多用户场景使用次要用户(SU)节点的局部预测概率作为融合测试统计。合作预测利用共享的测试统计数据来提高集体预测的准确性。然而基于软融合的协同SOP的文献较少。
本文提出了一种基于软判决的协作SOP融合方法,并提出了一种新的SF融合技术。从平均预测误差性能的角度分析了基于SF的SOP性能。在此基础上,提出了SF技术,并与局部谱预测和硬融合协作预测进行了比较。结果表明,与硬融合相比,SF在预测精度上具有更强的鲁棒性。
2 系统模型
基于软融合的预测假设离散时间系统具有R个分布在空间中的SU节点。频谱感知在每个时隙收集频谱占用信息。以一阶马尔可夫链为模型,给出了时刻t时频谱占用率,并将频谱占用率的SU观测值定义为yt。因此,在时刻(t-1),每个SU使用观测序列y(1:t-1)估计关于时隙t是否存在PU概率,以及基于针对PU的存在/不存在做出二进制决定时的概率,我们将其称为本地SOP。另一方面,每个SU生成的(t 1)处的本地观测值以及任何相关的测试统计信息都可以与融合中心(FC)共享,以合作预测PU占用,我们将其称为合作SOP。 当与FC共享SOP的本地二进制决策以外的信息时,我们将其称为基于软决策融合的协作SOP,这是此处介绍的工作主题。 局部和协作预测系统模型如图1所示。
A 主要用户活动模式
定义xt∈{0,1}时隙的PU通道占用率t。然后xt被建模为不可约平稳马尔可夫链,其中xt=1和xt=0分别表示繁忙和可用的通道。一阶马尔可夫链假定当前状态xt仅取决于以前的状态xt−1。转移概率矩阵p(xt|xt−1=i)对于这两种状态的马尔可夫链,如下式:
在式子中(μ,β)分别表示处于繁忙状态和空闲状态的概率。给定初始条件x0,PU的占用率可以充分体现在{p(x0),P}中.
B.频谱感知占位观测模型
对PU频谱占用率的SU观测反映了无线信道特性,并取决于频谱感知过程的性能。由于对数正态阴影和高斯白噪声,估计了光谱传感的观测误差.能量检测器的感知性能是通过检测概率来量化的Pd(r) ,和虚警Pf(r) 为rth SU节点,其中r∈{1,…,R} 。用中心极限定理逼近大量样本的检测概率和虚警概率。给出公式如下
式中,λ是检测阈值,σ2w是噪音的力量,而且ρr的信噪比是rthSU节点,它是分布在dB尺度上的高斯节点,其标准偏差(阴影参数)为σs(Db)。假设每个SU使用一个恒定的虚警概率(CFAR)战略[2]决定λ。HMM过程的特征是跃迁,发射概率矩阵,P和Er,分别在其中,发射矩阵Er为:
C.局部频谱预测模型
给定发射矩阵概率,SU计算自由/占用概率。p(x^r,t|yr,1:t−1) 的两步递归过程中,预测(方程式-4),以及更新 (方程-5) 一直迭代。
上面的计算需要对P和Er的估计,即模型参数估计。 在每个SU节点处,Er通过已知所有相关参数,通过使用(2)计算Pd(r)和Pf(r)来获得,并且使用Baum-Welch训练来迭代计算P。测试统计量p(xr,t | yr,1:t 1)是单个SU观测序列的函数,因此对于任意HMM模型,很难以封闭形式获得解析表达式。 因此,使用了基于期望最大化算法的数值递归计算。 最后,通过使用检测阈值执行二元决策来做出局部SOP,由
为了评估局部预测性能,可以根据预测后验概率[6],[9]计算单个用户平均预测误差。 根据经验,在两种状态下的HMM模型预测误差是伯努利随机变量Et=ˆxr,t xt,Et [0,1]。 那么,t和e分别是时刻t的瞬时预测误差和平均预测误差。
3 频谱占用率的软协同预测技术
A 基于最大比的融合
给定所有R个局部检验统计量p(x^r,t | yr,1:t-1)的非负归一化加权函数w(θr),则使用最大比合并(MRC)的基于协作SF的预测概率为 定义如下:
中θr是第r个SU节点处的测试统计量。 我们针对参数θ使用MRC提出了四种基于MRC的技术,如下所示:
方法MRC-1:基于预测概率,θr= p(x ^ r,t | y1:t-1)
方法MRC-2:根据检测概率,θr= Pd(r)
方法MRC-3:基于检测概率的对数,θr= log(Pd(r))
方法MRC-4:基于SNR,θr=ρr
预期给定加权函数的变化会影响协同平均预测误差的性能,这将在仿真部分中进行进一步分析。 与PU的距离相等时,所有SU的SNR值ρr都相同。 然后,期望MRC方法执行类似于下面描述的等增益方法。
B.基于等增益的软融合
相等增益(EG)合并假定所有辅助用户都具有相等的“权重”,即wr = 1R。 融合策略忽略了SU的检测和预测性能的异质性。 但是,与MRC相比,它不需要其他计算操作。
C.基于选择组合的软融合
在基于选择合并(SC)的方法中,选择所有SU节点中具有最大SNR的测试统计量,以在融合中心执行预测,如下所示。
在此请注意,无线信道中的阴影将在SC的融合过程中产生重大影响。
4 性能分析
可以通过平均预测误差(πé)[6],[9]来量化局部和协作预测的预测精度,其中对于协作预测情况,在(7)中Et = x ^ 1:R,t⊕xt。将软协作SOP的错误性能与局部预测(x ^ r,t)以及理想检测(PD(r)= 1,PF(r)= 0)的情况进行比较。此外,还将基于硬融合(HF)的协作SOP [6]与SF技术进行比较,以突出SF方法的改进。该分析考虑了所有用户都与主要用户距离相等的同类用户场景[6],并指出,随机SU位置的处理需要包括基于随机几何的模型以准确地研究预测性能,因此不属于此范围这封信。根据Sec-II中描述的系统模型,测试统计量p(x ^ r,t | yr,1:t-1,ρr)的值本质上是随机的。表I列出了模拟中使用的本地SOP模型的参数值,其中我们假设所有SU的ζ,Pf(r)和σ2w均相同。在这种情况下,我们的性能分析反映了考虑到将空间多样性用于SOP的改进。
图2给出了这项工作中描述的所有技术的平均预测误差曲线,并与其他技术进行了比较。由于均质的仿真环境,MRC和EG技术的性能曲线重叠,如图2所示。在高检测精度下(在ρr> -10 dB或Pd> 0.9,Pf = 0.1的情况下)可以实现局部预测误差的最小预测误差。对于较低的信噪比值,HMM局部预测误差性能会随信噪比ρr降低。因此,与局部预测相比,期望协作预测使预测器能够减少预测误差,并在较差的信道条件(ρr)下保持最小误差。先前已显示,与局部预测相比,局部预测决策的硬融合在较低的检测准确度值下朝着最小误差更快收敛(图3)[6]。 HF预测误差的二项式逼近以及模拟的协作预测误差在[6]中提出。二项式近似误差由在理想感测条件下定义的最小预测误差限制[9]。相比之下,SF技术在更低的信噪比值下仍保持最小的预测误差。此外,SF将最大预测误差减小为合作用户数量的函数,这是HF预测无法实现的壮举(图2和图3)。另外,与合作社技术相比,与合作社用户数量成函数关系的SF技术(EG / MRC)的平均预测误差降低得更快(图3)。 SF技术在对数正态阴影衰落下为协作预测误差性能增加了鲁棒性(图4)。首先,由于融合中心根据ρr优先考虑最佳用户,因此与单用户情况相比,SC错误性能更强健。其次,在较差的信道条件ρr<-15 dB时,SF技术(EG和MRC)比HF技术更健壮。最后,SF技术(EG和MRC)对于错误警报的不同值(即对于CFAR检测策略的不同设置)具有鲁棒性(图5)。相反,硬融合性能在相同设置下朝局部预测值降低。综上所述,SF技术提供了朝最小预测误差的快速收敛,这是合作用户数量的函数。阴影下的鲁棒性和检测性能优于硬聚变技术。
5 结论
与单用户错误性能相比,本文演示了基于软融合的技术,该技术通过使用空间分集来改善预测错误。 软融合技术在阴影下以及针对不同的误报概率设置时都非常可靠。 就鲁棒性和预测准确性而言,软融合优于硬融合技术。 未来的工作将包括异构协作方案以及使用随机几何工具进行分析的辅助用户聚类技术。
原文献:
Hamid, Eltom, Sithamparanathan, et al. Cooperative Soft Fusion for HMM-Based Spectrum Occupancy Prediction[J]. IEEE Communications Letters, 2018.