gsea富集分析结果怎么看_使用GSEA软件进行基因集富集分析

本文详细介绍了如何使用GSEA软件进行基因集富集分析,包括数据准备、导入、运行GSEA和查看结果四个步骤。通过GEO芯片数据集GSE7476举例,展示了从表达矩阵处理到设置参数运行分析的完整过程,帮助读者理解GSEA分析的每个环节。
摘要由CSDN通过智能技术生成

本文希望帮助大家快速使用GSEA软件进行基因集富集分析,如果希望了解GSEA分析原理话,可以看之前的文章使用clusterProfiler包进行富集分析。GSEA软件的使用可以分为以下四个步骤:

  1. 数据的准备

  • 表达矩阵
  • 表型文件

导入数据

运行GSEA

查看结果

下面以GEO芯片数据集(GSE7476)为例,一步步演示GSEA软件的使用。该数据集来自GPL570芯片平台,共有12个样本,包括9个肿瘤膀胱组织和3个正常膀胱组织。GSEA软件版本为4.0.1。

数据准备

表达矩阵

下载GSE7476数据集,如果网络差,可能导致数据下载不全,需要删除已下载的数据,重新下载。

setwd('./task-12')
rm(list = ls())

library(GEOquery)
gset 'GSE7476',destdir = '.', getGPL = T, AnnotGPL = T)
gset1 1]]          
expr # 表达矩阵
pdata # 样本信息
fdata # 探针注释信息

筛选探针:

library(tidyverse)
fdata1 % 
  select(ID, `Gene symbol`) %>% 
  rename(symbol = `Gene symbol`) %>% 
  filter(!(symbol == '' | str_detect(symbol, '///')))

ID转换:

expr1 % 
  as.data.frame() %>% 
  rownames_to_column('ID') %>% 
  inner_join(fdata1, by = 'ID') %>% 
  relocate(symbol, .after = 'ID')<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>