python时间序列预测波动上升曲线_【时间序列】时间序列曲线平滑+预测(LSTM)...

本文介绍了如何使用Python进行时间序列数据的预测,特别是波动上升的数据。首先展示了数据样本,然后通过引入hanning、hamming等平滑窗口函数对数据进行平滑处理。接着,利用LSTM神经网络模型进行预测,分别基于原始数据和平滑后的数据进行预测,并对比了预测效果。文章最后讨论了预测结果和拓展材料。
摘要由CSDN通过智能技术生成

一、数据

样例:

[7.847052, 7.847052, 7.861221, 7.861221, 7.879992, 7.879992, 7.876299, 7.876299, 7.878486, 7.878486, 7.900652, 7.900652, 7.903645, 7.903645, 7.854282, 7.854282, 7.865836, 7.865836, 7.85722, 7.85722, 7.876628, 7.876628, 7.877401, 7.877401, 7.872376, 7.872376, 7.882677, 7.882677, 7.9303, 7.9303, 7.873454, 7.873454, 7.847972, 7.847972, 7.857702, 7.857702, 7.863321, 7.863321, 7.913106, 7.913106, 7.854888, 7.854888, 7.88435, 7.88435, 7.846352, 7.846352, 7.880454, 7.880454, 7.866756, 7.866756, 7.834005, 7.834005, 7.846012, 7.846012, 7.858556, 7.858556, 7.86018, 7.86018, 7.850832, 7.850832, 7.877022, 7.877022, 7.92092, 7.92092, 7.852294, 7.852294, 7.85357, 7.85357, 7.818242, 7.818242, 7.881651, 7.881651, 7.850259, 7.850259, 7.783525, 7.783525, 7.856933, 7.856933, 7.91781, 7.91781, 7.834368, 7.834368, 7.817041, 7.817041, 7.898605, 7.898605, 7.811373, 7.811373, 7.828355, 7.828355, 7.856659, 7.856659, 7.814879, 7.814879, 7.808907, 7.808907, 7.791056, 7.791056, 7.837157, 7.837157, 7.826362, 7.826362, 7.823533, 7.823533, 7.817393, 7.817393, 7.79637, 7.79637, 7.841807, 7.841807, 7.822591, 7.822591, 7.828559, 7.828559, 7.78874, 7.78874, 7.749334, 7.749334, 7.786999, 7.786999, 7.791524, 7.791524, 7.799031, 7.799031, 7.765405, 7.765405, 7.80096, 7.80096, 7.827931, 7.827931, 7.733088, 7.733088, 7.787344, 7.787344, 7.755536, 7.755536, 7.758845, 7.758845, 7.749628, 7.749628, 7.779116, 7.779116, 7.832106, 7.832106, 7.775674, 7.775674, 7.771487, 7.771487, 7.771093, 7.771093, 7.767197, 7.767197, 7.757173, 7.757173, 7.722776, 7.722776, 7.734206, 7.734206, 7.684559, 7.684559, 7.775128, 7.775128, 7.737986, 7.737986, 7.701965, 7.701965, 7.715754, 7.715754, 7.710277, 7.710277, 7.667412, 7.667412, 7.742961, 7.742961, 7.70308, 7.70308, 7.712651, 7.712651, 7.731994, 7.731994, 7.691126, 7.691126, 7.652417, 7.652417, 7.746188, 7.746188, 7.665182, 7.665182, 7.689594, 7.689594, 7.677002, 7.677002, 7.64691, 7.64691, 7.682892, 7.682892, 7.644273, 7.644273, 7.671918, 7.671918, 7.638771, 7.638771, 7.655274, 7.655274, 7.620933, 7.620933, 7.625898, 7.625898, 7.608748, 7.608748, 7.648459, 7.648459, 7.6179, 7.6179, 7.61589, 7.61589, 7.624984, 7.624984, 7.6265, 7.6265, 7.597749, 7.597749, 7.609596, 7.609596, 7.607451, 7.607451, 7.577724, 7.577724, 7.598199, 7.598199, 7.575906, 7.575906, 7.583542, 7.583542, 7.60148, 7.60148, 7.578442, 7.578442, 7.574488, 7.574488, 7.594924, 7.594924, 7.591222, 7.591222, 7.604303, 7.604303, 7.559752, 7.559752, 7.569139, 7.569139, 7.589339, 7.589339, 7.585811, 7.585811, 7.531218, 7.531218, 7.547246, 7.547246, 7.553769, 7.553769, 7.573433, 7.573433, 7.548723, 7.548723, 7.55005, 7.55005, 7.531356, 7.531356, 7.542047, 7.542047, 7.569587, 7.569587, 7.553211, 7.553211, 7.533874, 7.533874, 7.546453, 7.546453, 7.568928, 7.568928, 7.534145, 7.534145, 7.526124, 7.526124, 7.607778, 7.607778, 7.558777, 7.558777, 7.572871, 7.572871, 7.534176, 7.534176, 7.587736, 7.587736, 7.568015, 7.568015, 7.59178, 7.59178, 7.586547, 7.586547, 7.531622, 7.531622, 7.515041, 7.515041, 7.591128, 7.591128, 7.54633, 7.54633, 7.583436, 7.583436, 7.593883, 7.593883, 7.528608, 7.528608, 7.554562, 7.554562, 7.556822, 7.556822, 7

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>