机器学习与知识发现_知识图谱与机器学习|KG入门 -- Part1-b 图深度学习

614e94aed77aa91f010064137264dd0b.png

图深入学习越来越重要。在这里,我将使用Spektral库和平台MatrixDS展示关于图的机器学习和深度学习的基本思想。这是上一篇文章的延续,主要强调深度学习。

介绍

273bc4dddb356c26815bb62567609b76.png

我们正在定义一种新的机器学习方法,专注于一种新的范式 -- Data Fabric。

在上一篇文章中,我们对机器学习给出了新的定义:

机器学习是一种自动发现Data Fabric中隐藏的”洞察力“(insight)的过程,它使用的算法能够发现这些”洞察力“(insight),而无需专门为此编写程序,从而创建模型来解决特定(或多个)问题。

理解这一点的前提是我们创建了一个Data Fabric。对我来说,最好的工具就是Anzo,正如我之前提到的。

9b9cdb45814ffd59f49fa70ddcf95b18.png

你可以使用Anzo构建所谓的“企业知识图谱”,当然也创建了Data Fabric。

但现在我想集中讲一个机器学习的主题--深度学习。这里我给出了深度学习的定义:

深度学习是机器学习的一个特定子领域,是一种从数据中学习表示的新方法,强调学习越来越有意义的表示的连续“层”(神经网络)。

在这里,我们将讨论深度学习和图论的结合,看看它如何帮助向前推进我们的研究。

主要的假设

如果我们能够创建一个支持公司所有数据的Data Fabric,那么通过使用神经网络(深度学习)从数据中学习越来越有意义的表示来发现”洞察力“(insight)的自动过程就可以在Data Fabric中运行。

1 图深度学习

c332e0228410f0ee728e244835f3bf2c.png

通常我们用张量来建立神经网络,但是记住我们也可以用矩阵来定义张量,图也可以通过矩阵来定义。

Spektral库的文档中声明图一般由三个矩阵表示:

ce4e79afe2bdd576d6501fa11339dceb.png

我不会在这里详细介绍,但如果你想更全面地了解图上的深度学习,请查看Tobias Skovgaard Jepsen的文章:

https://towardsdatascience.com/how-to-do-deep-learning-on-graphs-with-graph-convolutional-networks-7d2250723780

这里的重要部分是图神经网络(GNN)的概念。

图神经网络(GNN)

214e4d87fd72ba332a86575d82e0df25.png

GNN的思想很简单:为了对图的结构信息进行编码,每个节点v_i可以表示为一个低维状态向量s_i, 1≤i≤N(记住向量可以看作秩为1的张量,张量可以用矩阵表示)。

学习图深度模型的任务大致可以分为两个领域:

  • 关注节点的任务:这些任务与图中的各个节点相关联。比如节点分类、链接预测和节点推荐。
  • 关注图的任务:这些任务与整个图相关联。比如图分类、估计图的某些性质或生成图。

2 使用Spektral进行深度学习

4f5fe082ad2729b689e96049a56ee624.png

Spektral作者将Spektral定义为关系表示学习的框架,用Python构建并基于Keras API。

安装

我们将使用MatrixDS作为工具或运行我们的代码。记住,除了Anzo,你也可以在这里运行这个代码。

你需要做的第一件事是复制MatrixDS项目:

https://community.platform.matrixds.com/community/project/5c6ae7c8c1b06ba1e18f2a6e/files

通过点击:

4230ed57ee682b551c343325c06a5be3.png

你将安装库并使一切正常工作。如果你在外面运行这个,记住这个框架是在Ubuntu 16.04和18.04上测试的,你应该安装:

sudo apt install graphviz libgraphviz-dev libcgraph6

然后安装库:

pip install spektral

数据表示

在Spektral中,一些层和函数被实现以在一个图上工作,而另一些则考虑图形的集合。

该框架有以下三种主要的操作模式:

  • single,这种模式下我们考虑单个图,它的拓扑和属性;
  • batch,这种模式下我们考虑一组图,每个图都有自己的拓扑结构和属性;
  • mixed,这种模式下我们考虑一个具有固定拓扑结构,但具有不同属性的集合的图;这可以看作是批处理模式特殊情况(即所有邻接矩阵都是相同的),但由于计算原因而单独处理。
9b5e61d853eae7b031bafbdb151c5d9f.png

例如,如果我们运行

from spektral.datasets import citationadj, node_features, edge_features, _, _, _, _, _ = citation.load_data('cora')

我们将在sigle模式下加载数据,我们的邻接矩阵为:

In [3]: adj.shape Out[3]: (2708, 2708)

节点属性为:

In [3]: node_attributes.shape Out[3]: (2708, 2708)

边属性为:

In [3]: edge_attributes.shape Out[3]: (2708, 7)

使用图注意层(GAT)进行半监督分类

这里假设你知道Keras,对于更多的细节和代码可以查看:

https://community.platform.matrixds.com/community/project/5c6ae7c8c1b06ba1e18f2a6e/files

GAT是一种新型的神经网络结构,它利用掩蔽的自注意层对图形结构数据进行操作。在Spektral中,GraphAttention层计算卷积与layers.GraphConv类似,但是使用注意机制来加权邻接矩阵,而不是使用归一化拉普拉斯。

它们的工作方式是通过堆叠节点能够参与其邻域特征的层,这使得(隐式)为邻域中的不同节点指定不同的权重,而不需要任何开销过大的矩阵操作(例如矩阵求逆)或是需要事先了解图形结构。

c53aa6c4200e3a3db89f8cd6ce2b01e7.png

我们将使用的模型非常简单:

# Layersdropout_1 = Dropout(dropout_rate)(X_in)graph_attention_1 = GraphAttention(gat_channels, attn_heads=n_attn_heads, attn_heads_reduction='concat', dropout_rate=dropout_rate, activation='elu', kernel_regularizer=l2(l2_reg), attn_kernel_regularizer=l2(l2_reg))([dropout_1, A_in])dropout_2 = Dropout(dropout_rate)(graph_attention_1)graph_attention_2 = GraphAttention(n_classes, attn_heads=1, attn_heads_reduction='average', dropout_rate=dropout_rate, activation='softmax', kernel_regularizer=l2(l2_reg), attn_kernel_regularizer=l2(l2_reg))([dropout_2, A_in])# Build modelmodel = Model(inputs=[X_in, A_in], outputs=graph_attention_2)optimizer = Adam(lr=learning_rate)model.compile(optimizer=optimizer, loss='categorical_crossentropy', weighted_metrics=['acc'])model.summary()# Callbackses_callback = EarlyStopping(monitor='val_weighted_acc', patience=es_patience)tb_callback = TensorBoard(log_dir=log_dir, batch_size=N)mc_callback = ModelCheckpoint(log_dir + 'best_model.h5', monitor='val_weighted_acc', save_best_only=True, save_weights_only=True)

但是这个模型会很大:

391c5dd9adf0f5e8b50edf91e3633367.png

所以如果机器性能没有那么好的话,可以减少epochs的次数。

然后我们训练它(如果机器性能不够好,这可能需要几个小时):

# Train modelvalidation_data = ([node_features, adj], y_val, val_mask)model.fit([node_features, adj], y_train, sample_weight=train_mask, epochs=epochs, batch_size=N, validation_data=validation_data, shuffle=False, # Shuffling data means shuffling the whole graph callbacks=[es_callback, tb_callback, mc_callback])

得到最好的模型:

model.load_weights(log_dir + 'best_model.h5')

评估模型:

print('Evaluating model.')eval_results = model.evaluate([node_features, adj], y_test, sample_weight=test_mask, batch_size=N)print('Done.' 'Test loss: {}' 'Test accuracy: {}'.format(*eval_results))

更多的信息可以参见MatrixDS项目:

https://community.platform.matrixds.com/community/project/5c6ae7c8c1b06ba1e18f2a6e/files

3 这在Data Fabric中处于什么位置?

如果你还记得上一部分,假设我们有一个Data Fabric:

72135c7b7a8aeff4b0b6a4cf0d824981.png

一种”洞察力“(insight)可以被认为是它的一个凹痕:

6e62059c67c4e05448ab0a7f4eec4e4b.png

如果你在MatrixDS平台上使用本教程,你会发现我们使用的数据并不是一个简单的CS,但是我们为这个库提供了:

  • 一个N×N的邻接矩阵(N是节点数)
  • 一个N×D的特征矩阵(D是每个节点的特征数)
  • 一个N×E的二值标签矩阵(E是类的数量)

并且存储的是一系列文件:

ind.dataset_str.x => the feature vectors of the training instances as scipy.sparse.csr.csr_matrix object; ind.dataset_str.tx => the feature vectors of the test instances as scipy.sparse.csr.csr_matrix object; ind.dataset_str.allx => the feature vectors of both labeled and unlabeled training instances (a superset of ind.dataset_str.x) as scipy.sparse.csr.csr_matrix object; ind.dataset_str.y => the one-hot labels of the labeled training instances as numpy.ndarray object; ind.dataset_str.ty => the one-hot labels of the test instances as numpy.ndarray object; ind.dataset_str.ally => the labels for instances in ind.dataset_str.allx as numpy.ndarray object; ind.dataset_str.graph => a dict in the format {index: [index_of_neighbor_nodes]} as collections.defaultdict object; ind.dataset_str.test.index => the indices of test instances in graph, for the inductive setting as list object.

这些数据在图中,我们所做的就是把数据加载到库中。实际上,可以将数据转换为库中的NetworkX,numpy和sdf格式。

这意味着,如果我们将数据存储在一个Data Fabric中,我们就有了我们的知识图谱,因此我们已经有了很多这些特征,我们要做的就是找到一种方法,把它与库连接起来。这是现在最棘手的部分。

然后我们通过对Data Fabric内部的图运行深度学习算法的过程,开始在Data Fabric中寻找”洞察力“(insight)。

这里有趣的部分是,可能有一些方法可以在图中运行这些算法,为了实现这一点,我们需要能够使用存储在图形结构中的固有数据来构建模型,Lauren Shin 的Neo4j有一个非常有趣的方法:

https://towardsdatascience.com/graphs-and-ml-multiple-linear-regression-c6920a1f2e70

但这项工作仍在进行中。我想象这个过程是这样的:

b4ba90e9c430748f57248dc96c6fdf77.png

这意味着神经网络可以存在于Data Fabric中,而算法将与其中的资源一起运行。

我在这里甚至没有提到非欧几里德数据的概念,但之后的文章我们会讲到。

总结

如果能够将知识图谱与Spektral(或其他)库连接起来,则可以通过为已有的图数据部署图神经网络模型,在Data Fabric上运行深度学习算法。

除了标准图形推理等任务,像节点或图分类,基于图的深度学习的方法也被应用于广泛的学科,如建模社会影响,推荐系统,化学,物理,疾病或药物预测,自然语言处理(NLP),计算机视觉,交通预测和解决基于图的NP问题。可以参见

https://arxiv.org/pdf/1812.04202.pdf。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值