目录
1、JPA常用的查询操作 2、利用原生的SQl命令实现复杂的关联查询 3、JPA实现分页 4、JPA实现事务0 1PART JPA常用的查询操作Spring Data JPA通过解析方法名创建查询:
在执行查询时,Spring Data JPA框架会把方法名进行解析,解析到前缀比如 get、getBy、find、findBy、read、readBy时,会先把这些前缀截取掉,然后对剩下部分进行解析,剩下部分分为两种:一是只有属性名,二是属性名+条件;条件很好解析,解析的关键在于属性名,下面拿一个具体的例子来帮助大家更好的理解属性名解析规则。
解析规则例子:比如实体为Product,方法为findByGoodsTypeDetail ();
首先截取掉 findBy,然后对剩下的属性进行解析;
先判断 goodsTypeDetail(根据 POJO 规范,首字母变为小写,下同)是否为 Product的一个属性,如果是,则表示根据该属性进行查询;如果没有该属性,继续第三步;
从右往左截取第一个大写字母开头的字符串(本方法为 Detail),然后对比剩下的字符串(本方法为goodsType)是否为 Product的一个属性,如果是,则表示根据该属性进行查询;如果没有该属性,则重复第三步,继续从右往左截取(此处为TypeDetail,剩下goods),就这样一直循环到最终;假设 goods为 Product的一个属性,则说明goods不是常量类型,而是一个对象类型;
此时剩下字符串 TypeDetail,先判断goods对象中是否有 typeDetail属性,如果有,则表示该方法最终是根据 "Product.goods.typeDetail" 的值进行查询;如果没有该属性,则继续按照第三步的规则从右往左截取,最终表示根据 "Product.goods.type.detail" 的值进行查询。
不过这种解析规则不是完美的,也存在bug,不注意可能会掉到这个坑里,比如Product中有一个属性叫goods,同时还有一个属性叫goodsType,这时在解析时会出现混乱,不过可以在属性之间加上 "_"来解决这个问题,注意:"_"是加在查询方法上的,不是加在属性名上的;比如 "findByGoods_TypeDetail()" (当Product中不存在goods_TypeDetail时,是给解析器说明Goods为一个对象)或"findByGoodsType_Detail()"(当Product中不存在goodsType_Detail时,是给解析器说明GoodsType为一个对象)。
查询时,很多时候需要同时使用多个属性进行查询,而且查询的条件也各不相同,Spring Data JPA 为此提供了一些条件查询的关键字,我把常用的都整理了一下,如下表:
常用的查询语句: //And --- 等价于 SQL 中的 and 关键字,比如 findByHeightAndSex(int height,char sex); public List findByHeightAndSex(int height,char sex); // Or --- 等价于 SQL 中的 or 关键字,比如 findByHeightOrSex(int height,char sex); public ListfindByHeightOrSex(int height,char sex); //Between --- 等价于 SQL 中的 between 关键字,比如 findByHeightBetween(int min, int max); public ListfindByHeightBetween(int min,int max); //LessThan --- 等价于 SQL 中的 " public ListfindByHeightLessThan(int max); //GreaterThan --- 等价于 SQL 中的">",比如 findByHeightGreaterThan(int min); public ListfindByHeightGreaterThan(int min); //IsNull --- 等价于 SQL 中的 "is null",比如 findByNameIsNull(); public ListfindByNameIsNull(); //IsNotNull --- 等价于 SQL 中的 "is not null",比如 findByNameIsNotNull(); public ListfindByNameIsNotNull(); //NotNull --- 与 IsNotNull 等价; public ListfindByNameNotNull(); //Like --- 等价于 SQL 中的 "like",比如 findByNameLike(String name); public ListfindByNameLike(String name); //NotLike --- 等价于 SQL 中的 "not like",比如 findByNameNotLike(String name); public ListfindByNameNotLike(String name); //OrderBy --- 等价于 SQL 中的 "order by",比如 findByNameNotNullOrderByHeightAsc(); public ListfindByNameNotNullOrderByHeightAsc(); //Not --- 等价于 SQL 中的 "!=",比如 findByNameNot(String name); public ListfindByNameNot(String name); //In --- 等价于 SQL 中的 "in",比如 findByNameIN(String name); public ListfindByNameIn(String name); //NotIn --- 等价于 SQL 中的 "not in",比如 findByNameNotIN(String name); public List findByNameNotIn(String name);
JPA中的风格就是这样,每个方法其实都是一条SQl命令,通过一些关键字就可以实现SQL中类似于like in等等之类的命令了。
最重要的是我们再开发的过程中,只需要编写dao中一个个方法,不需要我们编写dao的实现类,这样就可以大大的挺高代码的复用率、提高我们的开发效率。
02 PART 复杂的关联查询 那一些比较复杂的关联查询要怎么实现呢,JPA的处理方法是: 利用原生的SQl命令来实现那些复杂的关联查询,下面就来看下案例: //利用原生的SQL进行查询操作 @Query(value = "select o.* from orders o ,user u where o.uid=u.id and u.name=?1", nativeQuery = true) @Modifying public ListfindOrderByName(String name); //利用原生的SQL进行删除操作 @Query(value = "delete from orders where id=?1 ", nativeQuery = true) @Modifying public void deleteOrderById(int id); //利用原生的SQL进行删除操作 @Query(value = "delete from orders where uid=?1 ", nativeQuery = true) @Modifying public void deleteOrderByUId(int uid); //利用原生的SQL进行修改操作 @Query(value = "update orders set name=?1 where id=?2 ", nativeQuery = true) @Modifying public void updateOrderName(String name,int id); //利用原生的SQL进行插入操作 @Query(value = "insert into orders(name,uid) value(?1,?2)", nativeQuery = true) @Modifying public void insertOrder(String name,int uid);
使用 @Modifying 将查询操作标识为更新操作:
在使用 @Query 的同时使用 @Modifying ,这样会生成一个更新的操作,而非查询。
上面的案例中给出了,利用JPA实现原生的SQL操作,可以很方便的进行数据库表的操作。 所以如果是那种查询语句不是非常复杂,对查询时间要求不是特别苛刻的项目,完全可以采用JPA来进行项目的开发。
03PART JPA实现分页 下面接着来介绍JPA是怎么实现分页的效果,其实JPA脱胎于hibernate,所以本身就对分页功能有很好的支持。 下面给出具体例子://实现分页功能Page findByNameNot(String name,Pageable pageable);
@RequestMapping(value = "/params", method= RequestMethod.GET) @ResponseBody public String getEntryByParams(@RequestParam(value = "name", defaultValue = "林志强") String name, @RequestParam(value = "page", defaultValue = "0") Integer page, @RequestParam(value = "size", defaultValue = "15") Integer size) { Sort sort = new Sort(Sort.Direction.DESC, "id"); Pageable pageable = new PageRequest(page, size, sort); Page pages=userDao.findByNameNot(name,pageable); Iterator it=pages.iterator(); while(it.hasNext()){ System.out.println("value:"+((User)it.next()).getId()); } return "success...login...."; }
上面的代码一个是在dao层中的,一个是在controller中的。dao层中添加一个返回值为Page,参数值为Pageable。controller层中通过实例化Pageable这个类,然后调用dao层这个分页方法。通过这些步骤就可以轻轻松松的实现分页的效果啦,看起来是不是特别方便。
04PART JPA实现事务操作 最后在给大家介绍一下JPA是如何实现事务操作的。 其实因为SpringBoot中已经对事务做了很好的封装了,使用起来特别方便。 下面看一下案例: @RequestMapping("/saveOrder") @ResponseBody @Transactional() public String saveOrder(){ Order o1=new Order("11",2); Order o2=new Order("22",2); Order o3=new Order("33",2); Order o4=new Order("44",2); orderDao.save(o1); orderDao.save(o2); orderDao.save(o3); orderDao.save(o4); return "successfull....saveOrder......"; }
只要在方法的上面加上@Transaction 这个注解就可以轻轻松松的实现事务的操作了,是不是特别方便啊。不过这里有几点需要注意的是:
这个注解实现的事务管理器是默认的,如果不想要默认是事务管理器,可以自己进行添加,我这里就不多介绍了。
事务的隔离级别也是可以自己设置的。
事务的传播行为也是可以自己设置的。