matlab怎么画lnx图像,inx图像(lnx的图像函数)

本文探讨了对数函数的定义域、值域及图像特性。通过具体例子解析了如何绘制对数函数图像,包括其增减区间,并讨论了与指数函数的关系。此外,还分析了几种特殊情况下对数函数图像的绘制方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义域(0,正无穷) 值域(负无穷,正无穷)

用描点法:函数y=lnx过点点(1,0),函数是单调递增的,下面是大致图像,满意请采纳我哦~~

你的1没有正确答案,除非是你题目错的2的详细过程如下4+log2]3=log2]16+log2]3=log2]48而2的log2]48次方就等于48,有公式的。不知道你能不能看懂?

y=x/log(x)的图像

首先,你知道y=loga x的图像怎么画吧(百函数必过(1,0)点) ①画y=lnx 函数的底是e≈2>1,则为过(1,0)点的增度函数。 定义域x>0 ②画y=-lnx 画函数-f(x)只需将函数f(x.

越多越好或者这类的特殊题也行

ex与lnx关于某一条直线对称,可以看成是旋转得到的.貌似也就这个有联系了

你好!图形分布在第一和第四象限 具有对数函数图象的所有性质 它是以e为底的 所以过点 (1,0) 和点(e,1) 是一个单调递增函数 如有疑问,请追问。

也是三角函数图像,只是关于x轴对折过去!

f(x)=InX的图像与g(x)=x^2-4x+4的图像交点个数是

你好!f(x)=lnxg(x)=x^2-4x+4=(x-2)^2有图像知道f(e)=0g(e)>0g'(x)=2x-4x>e时 g'(x)>f'(x) g(x)增长速度快于f(x)所以f(x)=InX的图像与g(x)=x^2-4x+4的图像交点个数是0仅代表个人.

解由题知f(e)=Ine=1即切点(e,f(e))为(e,1)对函数f(x)=Inx求导即f′(x)哗籂糕饺蕹祭革熄宫陇=(Inx)′=1/x即函数f(x)=Inx的图像在点(e,1)处的切线的斜率为f′(e)=1/e即.

(在下是文科生.谢谢)

手工的话,计算f(1),f(2).的值,圆滑连接 不然用matlab很简单

图像如图

代数意义:以e为底x的对数 几何意义:作图过(1,0)点,图像在y轴左侧,当x趋向0时,函数图像向下无限趋近于y轴负向,当x延正向增大,函数凸着递增。

如题,为什么? X的定义域不是0到正无穷么,怎么还会出现-X?

ln(-x)的定义域是从负无穷到零,刘小!

f(x)=lnx f(1)=ln1=0 ∴f(x)过点(1,0) 求f(x)的导数f'(x)=1/x f'(1)=1 ∴过点(1,0)的切线斜率为1 ∴切线的方程为x-y-1=0

函数表达式是lnx直接代入x就能用

描述以下哪段增 哪段减

y=inx/x ( 根据公式(u/v)'=(u'v-uv')/v^2)y'=[(lnx)'x-lnx*(x)']/x^2 =(x/x-lnx)/x^2 =(1-lnx)/x^2

y=lnxy'=1/x到直线2x-y+2=0的距离最近点就是与直线平行的切线点。那么切线的斜率K=2即:1/X=2,得到X=1/2即点的横坐标是X=1/2

先把y=y=Inx的图像画出来,在把X轴下方的图像翻转到X轴上方,在向上平移1个单位,就这样

已知函数f(x)=n+Inx的图像在点P(m,f(m))处的切线方程为y=x设g(x)=mx-n/x-2Inx。

因为函数f(x)=n+Inx的图像在点P(m,f(m))处的切线方程为y=x而f ' (x)=1/x 所以在P处切线方程可为y-(n-lnm)=1/m(x-m)所以可得m=1,n=1则g(x)=x-1/x-2lnx g ' (x)=(x-1)^2/x^2 ≥0 .

要使用MATLAB绘制ln(x)的拉格朗日插值和牛顿插值函数图像,我们可以按照以下步骤进行操作: 1. 定义插值点的区间范围和间隔。选择一个适当的区间范围(例如[0.1, 5])和间隔(例如0.1),取得插值点的x坐标。 2. 根据ln(x)函数,计算插值点的y值。 3. 使用拉格朗日插值方法,根据插值点的坐标和y值,计算ln(x)的拉格朗日插值函数。 4. 使用牛顿插值法,根据插值点的坐标和y值,计算ln(x)的牛顿插值函数。 5. 使用plot函数,将插值点及函数图像在同一个坐标系中绘制出来。 以下是MATLAB代码示例: ``` x = 0.1:0.1:5; % 定义插值点的x坐标 y = log(x); % 根据ln(x)函数计算插值点的y值 % 拉格朗日插值 lagrange_poly = lagrange(x, y); % 牛顿插值 newton_poly = newton(x, y); % 绘制图像 plot(x, y, 'o', 'MarkerFaceColor', 'b') % 绘制插值点 hold on fplot(@(x) log(x), [0.1, 5], 'r') % 绘制ln(x)函数图像 fplot(lagrange_poly, [0.1, 5], 'g') % 绘制拉格朗日插值函数图像 fplot(newton_poly, [0.1, 5], 'm') % 绘制牛顿插值函数图像 hold off legend('插值点', 'ln(x)函数', '拉格朗日插值', '牛顿插值') % 添加图例 % 拉格朗日插值多项式计算函数 function poly = lagrange(x, y) n = length(x); syms t; poly = 0; for i = 1:n L = 1; for j = 1:n if j ~= i L = L * (t - x(j)) / (x(i) - x(j)); end end poly = poly + y(i) * L; end end % 牛顿插值多项式计算函数 function poly = newton(x, y) n = length(x); syms t; poly = y(1); for i = 2:n temp = 1; for j = 1:i-1 temp = temp * (t - x(j)); end poly = poly + temp * divided_difference(x, y, i); end end % 计算分差表 function diff = divided_difference(x, y, n) if n == 1 diff = y(1); else diff = (divided_difference(x, y, n-1) - divided_difference(x, y, n-1))/(x(1)-x(n)); end end ``` 执行代码后,将会生成包含插值点、ln(x)函数、拉格朗日插值函数和牛顿插值函数图像,并在图例中加以区分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值