output怎么用_用MatCont分析非线性动力学方程组(二)

本文通过MatCont工具详细介绍了受迫杜芬振子模型的分析过程,包括模型建立、参数设置、状态空间转换、数值计算和频率响应分析,展示了如何从Limit Cycle开始研究稳态振幅随激励频率的变化。
摘要由CSDN通过智能技术生成

3e786bbf5a2dc66a5c20c6dece85437e.png

在上一篇文章《用MatCont分析非线性动力学方程组(一)》中,笔者介绍了如何下载、安装与启动MatCont,这款基于Matlab开发的非线性动力学分析工具包。并且以最基本的Pitchfork Bifurcation为例,具体介绍了MatCont的使用方法。还没熟悉MatCont最基本环境的小伙伴们,可以随以下传送门先熟悉以下各种操作界面。

RiskSeeker Xu:用MatCont分析非线性动力学方程组(一)​zhuanlan.zhihu.com
084aa9a8461418882fb300482cbaaa45.png

本文中,我们将用MatCont来研究一个物理上非常经典的模型,The Duffing Equation,或称杜芬振子。它是在基本线型震动模型的基础上,增加了一个关于回复力的三次项。其应用极其广泛,从力学到电磁学,很多线性模型都是杜芬振子模型忽略掉三次项后的线性化结果。最简单的钟摆震动,是一个很标准的杜芬振子(含负三次项);小振幅情况下,忽略掉三次项,就可以得到标准的线型简谐振动。

1. 受迫杜芬振子的动力学模型

初始条件

1.1. Exact Solutions

虽然有很非常多的论文给出了Duffing Equation的Exact Solution(多数基于雅可比椭圆函数),但是据笔者所知,目前还没有被当做绝对经典的Exact Solution。

1.2. Asymptotic Solutions

一般情况下,都是把由扰动法得到的渐近解作为经典解析解,具体方法是:由典型的Lindstedt Poincare扰动法,或Two Time-scales扰动法,结合Harmonic Balance法,加之考虑有正damping的存在,可比较方便地得到系统达到稳态时的渐进解。

Frequancy-Response:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值