output怎么用_用MatCont分析非线性动力学方程组(二)

本文通过MatCont工具详细介绍了受迫杜芬振子模型的分析过程,包括模型建立、参数设置、状态空间转换、数值计算和频率响应分析,展示了如何从Limit Cycle开始研究稳态振幅随激励频率的变化。
摘要由CSDN通过智能技术生成

3e786bbf5a2dc66a5c20c6dece85437e.png

在上一篇文章《用MatCont分析非线性动力学方程组(一)》中,笔者介绍了如何下载、安装与启动MatCont,这款基于Matlab开发的非线性动力学分析工具包。并且以最基本的Pitchfork Bifurcation为例,具体介绍了MatCont的使用方法。还没熟悉MatCont最基本环境的小伙伴们,可以随以下传送门先熟悉以下各种操作界面。

RiskSeeker Xu:用MatCont分析非线性动力学方程组(一)​zhuanlan.zhihu.com
084aa9a8461418882fb300482cbaaa45.png

本文中,我们将用MatCont来研究一个物理上非常经典的模型,The Duffing Equation,或称杜芬振子。它是在基本线型震动模型的基础上,增加了一个关于回复力的三次项。其应用极其广泛,从力学到电磁学,很多线性模型都是杜芬振子模型忽略掉三次项后的线性化结果。最简单的钟摆震动,是一个很标准的杜芬振子(含负三次项);小振幅情况下,忽略掉三次项,就可以得到标准的线型简谐振动。

1. 受迫杜芬振子的动力学模型

初始条件

1.1. Exact Solutions

虽然有很非常多的论文给出了Duffing Equation的Exact Solution(多数基于雅可比椭圆函数),但是据笔者所知,目前还没有被当做绝对经典的Exact Solution。

1.2. Asymptotic Solutions

一般情况下,都是把由扰动法得到的渐近解作为经典解析解,具体方法是:由典型的Lindstedt Poincare扰动法,或Two Time-scales扰动法,结合Harmonic Balance法,加之考虑有正damping的存在,可比较方便地得到系统达到稳态时的渐进解。

Frequancy-Response:

### 非线性微分器 非线性微分器是一种用于信号处理的技术,旨在通过引入非线性特性来改善系统的动态性能。这类微分器能够有效抑制噪声并提高对输入变化的响应速度。其核心思想是在传统微分运算的基础上加入特定形式的非线性函数,从而实现更精确和平滑的结果。 对于非线性微分器而言,在实际工程应用中通常会采用一些特殊的结构设计方法,比如利用饱和函数或死区环节等手段来构建具有鲁棒性和自适应能力较强的滤波机制[^3]。 ```python def nonlinear_differentiator(signal, alpha=0.1): """ 实现简单的非线性微分器 参数: signal (list): 输入信号序列 alpha (float): 调节参数 返回: list: 微分后的输出信号 """ output = [] prev_error = 0 for i in range(len(signal)): error = signal[i] -1] if i>0 else 0) diff_output = alpha * np.sign(error) * abs(error)**(alpha/(1+alpha)) output.append(diff_output + prev_error*(1-alpha)) prev_error = diff_output return output ``` ### 非线性干扰观测器 非线性干扰观测器主要用于解决复杂环境下存在的未知扰动问题。该类观测器可以实时监测外部环境的变化情况,并据此调整内部模型预测误差,进而达到补偿目的。具体来说,就是通过对系统状态变量以及外界因素之间关系的研究建立合适的数学表达式,再借助优化算法求解最优估计值。 在非线性干扰观测器的设计过程中,为了确保所得到的状态反馈控制器具备良好的稳定性质,往往还需要完成严格的理论分析工作,包括但不限于李雅普诺夫稳定性判据的应用和渐近收敛条件验证等方面的内容[^1]。 ```matlab function dxdt = NLDO(sys_model, y_measured, u_input) % 定义非线性干扰观测器的动力学方程组 persistent A B C L P Q R S; if isempty(A), % 初始化增益矩阵和其他必要参数 [A,B,C] = ssdata(sys_model); n = size(A,1); m = length(u_input); p = length(y_measured); % 设计Luenberger型观测器增益向量L [~,~,P] = care(A',C',eye(p)); L = place(A',C',[eigvals...]); % 计算其他辅助项Q,R,S... end dxdt = A*x + B*u_input + L*(y_measured-C*x); end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值