如何在手机上编码python_如何在Python中进行热编码?

小编典典

方法1:你可以在pandas数据框上使用get_dummies。

范例1:

import pandas as pd

s = pd.Series(list('abca'))

pd.get_dummies(s)

Out[]:

a b c

0 1.0 0.0 0.0

1 0.0 1.0 0.0

2 0.0 0.0 1.0

3 1.0 0.0 0.0

范例2:

下面将把给定的列转换为热点。使用前缀具有多个虚拟变量。

import pandas as pd

df = pd.DataFrame({

'A':['a','b','a'],

'B':['b','a','c']

})

df

Out[]:

A B

0 a b

1 b a

2 a c

# Get one hot encoding of columns B

one_hot = pd.get_dummies(df['B'])

# Drop column B as it is now encoded

df = df.drop('B',axis = 1)

# Join the encoded df

df = df.join(one_hot)

df

Out[]:

A a b c

0 a 0 1 0

1 b 1 0 0

2 a 0 0 1

方法2:使用Scikit学习

给定具有三个特征和四个样本的数据集,我们让编码器找到每个特征的最大值,并将数据转换为二进制的一键编码。

>>> from sklearn.preprocessing import OneHotEncoder

>>> enc = OneHotEncoder()

>>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])

OneHotEncoder(categorical_features='all', dtype=,

handle_unknown='error', n_values='auto', sparse=True)

>>> enc.n_values_

array([2, 3, 4])

>>> enc.feature_indices_

array([0, 2, 5, 9], dtype=int32)

>>> enc.transform([[0, 1, 1]]).toarray()

array([[ 1., 0., 0., 1., 0., 0., 1., 0., 0.]])

2020-02-23

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值