小编典典
方法1:你可以在pandas数据框上使用get_dummies。
范例1:
import pandas as pd
s = pd.Series(list('abca'))
pd.get_dummies(s)
Out[]:
a b c
0 1.0 0.0 0.0
1 0.0 1.0 0.0
2 0.0 0.0 1.0
3 1.0 0.0 0.0
范例2:
下面将把给定的列转换为热点。使用前缀具有多个虚拟变量。
import pandas as pd
df = pd.DataFrame({
'A':['a','b','a'],
'B':['b','a','c']
})
df
Out[]:
A B
0 a b
1 b a
2 a c
# Get one hot encoding of columns B
one_hot = pd.get_dummies(df['B'])
# Drop column B as it is now encoded
df = df.drop('B',axis = 1)
# Join the encoded df
df = df.join(one_hot)
df
Out[]:
A a b c
0 a 0 1 0
1 b 1 0 0
2 a 0 0 1
方法2:使用Scikit学习
给定具有三个特征和四个样本的数据集,我们让编码器找到每个特征的最大值,并将数据转换为二进制的一键编码。
>>> from sklearn.preprocessing import OneHotEncoder
>>> enc = OneHotEncoder()
>>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])
OneHotEncoder(categorical_features='all', dtype=,
handle_unknown='error', n_values='auto', sparse=True)
>>> enc.n_values_
array([2, 3, 4])
>>> enc.feature_indices_
array([0, 2, 5, 9], dtype=int32)
>>> enc.transform([[0, 1, 1]]).toarray()
array([[ 1., 0., 0., 1., 0., 0., 1., 0., 0.]])
2020-02-23