随机森林需要分训练集测试集吗_如何(以及为什么需要)创建一个好的验证集...

本文探讨了在随机森林等机器学习模型中正确选择验证集的重要性。验证集用于模型之间的选择和参数调整,而测试集则用于评估模型的泛化能力。当数据为时间序列或具有特定属性时,随机子集可能不是最佳选择。例如,时间序列数据应选择连续时间段作为验证集,以模拟未来预测的情景。此外,Kaggle竞赛中的数据通常需要特殊处理,以确保验证集能反映新数据的特性。理解验证集和测试集的区别对于避免过拟合和提升模型在真实环境中的性能至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:Rachel Thomas

编译:ronghuaiyang

导读

验证集的划分真的就是调用一个train_test_split函数这么简单么,其实并不是。

一个非常常见的场景:一个看起来非常好的机器学习模型在现实的生产环境中使用时是完全失败的。其后果包括老板对现在的机器学习持怀疑态度,不愿再尝试。怎么会这样呢?

导致开发结果与生产结果之间脱节的最可能的原因之一是错误地选择了验证集(甚至更糟,根本没有验证集)。根据数据的性质,选择验证集可能是最重要的一步。虽然sklearn提供了一个train_test_split方法,但该方法只获取数据的一个随机子集,对于许多实际问题来说,这是一个糟糕的选择。

训练集、验证集和测试集的定义可能非常微妙,而且这些术语有时使用不一致。在深度学习社区中,“测试时间推断”通常指的是对生产中的数据进行评估,这不是测试集的技术定义。如前所述,sklearn有个train_test_split方法,但没有train_validation_test_split方法。Kaggle只提供训练和测试集,但是要做得好,你需要将它们的训练集分解为你自己的验证集和训练集。此外,Kaggle的测试集实际上被细分为两个子集。许多初学者可能会感到困惑,这一点也不奇怪!我将在下面讨论这些微妙之处。

首先,什么是“验证集”?

当创建一个机器学习模型时,最终的目标是使它在新数据上是准确的&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值