单片微型计算机实验,单片微型计算机新实验..doc

PAGE

PAGE 17

实验六 定时/计数器实验

一、实验目的

1)掌握单片机内部定时/计数器的应用

2)掌握单片机中断的原理及应用

二、实验仪器

TDN教学实验系统一套,PC机一台

三、实验内容

用定时计数器T0或T1,在P1.0线上输出间歇250HZ信号,此信号持续1S,间断1S,再持续1S,……。将P1.0的信号经三极管驱动扬声器发出“嘟…嘟”的声音。

250HZ 250HZ 250HZ

1S 1S

四、实验步骤

1)定时/计数器初值计算

定时/计数器T0工作于方式0。由于要求输出频率为250HZ的信号,因此,该信号的周期为4ms。

4ms

T0每2ms中断一次,系统晶振频率为6MHZ,一个机器周期T=2μs,初值,转换为二进制数为1110000011000,故T0的初值TH0=EOH,TL0=18H。

2)参考程序流程图

主程序流程图: 中断服务子程序流程图:TIN

设置初值

设置初值

30H←(30H)+1

开始

开始

Y中断次数计数器30H,31H←

Y

中断次数计数器30H,31H

←00H

位标志00H←0

(31H,30H)=500?

(31H,30H)=500?

1S到?

00H←31H,30H

00H←

31H,30H←0

TMOD

TMOD←T0工作

方式 #00H

N

N

Y(00H)=1?

Y

(00H)=1

送初值

P1.0

P1.0←

开中断(T

开中断(T0)

N

N

启动(T0

启动(T0)

返回

返回

等待

等待

图4-1 图4-2

3、参考程序清单

ORG 0000H

LJMP TMA

ORG 000BH

LJMP TIN

ORG 0100H

TMA:MOV 30H,#00H

MOV 31H,#00H

CLR 00H

MOV TMOD,#00H

MOV THO,#OEOH

MOV TLO,#18H

SETB EA

SETB ETO

SETB TRO

TMA1:SJMP TMA1

TIN: MOV THO,#OEOH

MOV TLO,#18H

MOV A,30H

ADD A,#01H

MOV 30H,A

MOV A,31H

ADDC A,#00H

MOV 31H,A

JZ TIN1

MOV A,30H

CJNE A,#OF4H,TIN1

CPL 00H

CLR A

MOV 30H,A

MOV 31H,A

TIN1:JNB 00H,TIN2

CPL P1.0

TIN2:RETI

END

程序调试结果:扬声器中发出“嘟……嘟……”的声音,符合实验要求。

实验七 外部中断实验

一、实验目的

1)掌握单片机外部中断的初始化及程序的编制

2)当系统有二个或二个以上的中断时,程序的编制、调试

二、实验仪器

PC机一台,TDN教学实验系统一套

三、实验内容

1)当外部来一次中断时,扬声器发出连续的“嘟”声。

2)当外部来第二次中断时,扬声器停止发声。

3)声音的频率为250HZ,由定时器T0,工作于方式0,用中断方式使P1.0引脚上产生250HZ方波信号,通过三极管放大,驱动扬声器。

P1.0送出250HZ的方波信号

P1.0送出250HZ的方波信号

四、实验步骤

1)硬件设计及接线

产生电路:

8031

8031

(P3.3)

使用该电路的目的,产生单脉冲,目的在于“去抖动”。

2)P1.0与扬声器的接线

3)T0初值计算。

4ms

fosc=6MHZ

T机器周期=2us

信号fS=250HZ TS=4ms

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值