python画logistic拟合曲线_Python基于最小二乘法实现曲线拟合示例

本文实例讲述了Python基于最小二乘法实现曲线拟合。分享给大家供大家参考,具体如下:

这里不手动实现最小二乘,调用scipy库中实现好的相关优化函数。

考虑如下的含有4个参数的函数式:

201861490526226.png?20185149546

构造数据

import numpy as np

from scipy import optimize

import matplotlib.pyplot as plt

def logistic4(x, A, B, C, D):

return (A-D)/(1+(x/C)**B)+D

def residuals(p, y, x):

A, B, C, D = p

return y - logisctic4(x, A, B, C, D)

def peval(x, p):

A, B, C, D = p

return logistic4(x, A, B, C, D)

A, B, C, D = .5, 2.5, 8, 7.3

x = np.linspace(0, 20, 20)

y_true = logistic4(x, A, B, C, D)

y_meas = y_true + 0.2 * np.random.randn(len(y_true))

调用工具箱函数,进行优化

p0 = [1/2]*4

plesq = optimize.leastsq(residuals, p0, args=(y_meas, x))

# leastsq函数的功能其实是根据误差(y_meas-y_true)

# 估计模型(也即函数)的参数

绘图

plt.figure(figsize=(6, 4.5))

plt.plot(x, peval(x, plesq[0]), x, y_meas, 'o', x, y_true)

plt.legend(['Fit', 'Noisy', 'True'], loc='upper left')

plt.title('least square for the noisy data (measurements)')

for i, (param, true, est) in enumerate(zip('ABCD', [A, B, C, D], plesq[0])):

plt.text(11, 2-i*.5, '{} = {:.2f}, est({:.2f}) = {:.2f}'.format(param, true, param, est))

plt.savefig('./logisitic.png')

plt.show()

201861490605237.png?20185149646

PS:这里再为大家推荐两款相似的在线工具供大家参考:

希望本文所述对大家Python程序设计有所帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值