一、单例模式
1、常用的单例模块
classSingleton(object):_instance =Nonedef __new__(cls, *args, **kwargs):if not cls._instance:
cls._instance = super(Singleton, cls).__new__(cls)return cls._instances1=Singleton()
s2=Singleton()print(s1 is s2) #True
2、属性共用的单例
"""上面的第一种写法,虽然创建的是同一个实例,
但是属性是不共用的,因为每次__init__都会重新设置"""
classSingleton(object):
_instance=Nonedef __new__(cls, *args, **kwargs):if notcls._instance:
cls._instance= super(Singleton, cls).__new__(cls)returncls._instancedef __init__(self, name, age):
self.name=name
self.age=age
s1= Singleton(name="小明", age=18)print(s1.name, s1.age) #小明 18
s2= Singleton(name="小红", age=17)print(s2.name, s2.age) #小红 17
print(s1 is s2) #True
"""因此想要属性也共用,__init__也需要处理"""
classSingleton(object):
_instance=None
_initialized=Falsedef __new__(cls, *args, **kwargs):if notcls._instance:
cls._instance= super(Singleton, cls).__new__(cls)returncls._instancedef __init__(self, name, age):if notself._initialized:
self.name=name
self.age=age
self._initialized=True
s1= Singleton(name="小明", age=18)print(s1.name, s1.age) #小明 18
s2= Singleton(name="小红", age=17)print(s2.name, s2.age) #小明 18
print(s1 is s2) #True
3、加锁的单例
importtimeimportthreadingclassSingleton(object):
lock= threading.RLock() #定义一把锁
_instance =Nonedef __new__(cls, *args, **kwargs):ifcls._instance:return cls._instance #如果之前实例化过,没必要再次实例化,因为都是同一个实例
with cls.lock:#避免当线程没有返回实例前,另一个线程也进来了,导致出现不止一个实例
if notcls._instance:
cls._instance= super(Singleton, cls).__new__(cls)returncls._instancedeftask(arg):
obj=Singleton()print(obj)for i in range(10):
t= threading.Thread(target=task,args=(i,))
t.start()
time.sleep(10)
obj= Singleton()
4、单例装饰器
defsingleton(cls):
_instance={}def _singleton(*args, **kwargs):if cls not in_instance:
_instance[cls]= cls(*args, **kwargs)return_instance[cls]return_singleton
@singletonclassA():def __init__(self, name):
self.name=name
a1= A("ming")print(a1.name) #ming
a2= A("dong")print(a2.name) #ming
二、栈
1、自定义一个栈
#栈是后进先出的数据结构,但是python中并没有栈这种数据结构,因此我们自己实现
classStack(object):def __init__(self):
self.MyStack=[]defpush(self, value):"""向栈插入数据
:param value:
:return:"""self.MyStack.append(value)defpop(self):"""从栈中取走数据
:return:"""
returnself.MyStack.pop()
stack=Stack()
stack.push(1)
stack.push(2)print(stack.pop()) #2
2、python中的栈
后进先出(栈)from queue importLifoQueue
lq=LifoQueue()
lq.put(1)
lq.put(2)
lq.put(3)print(lq.get()) #3
print(lq.get()) #2
print(lq.get()) #1
三、队列
1、python默认的队列
#队列(queue)是一种具有先进先出特征的线性数据结构,元素的增加只能在一端进行,元素的删除只能在另一端进行。能够增加元素的队列一端称为队尾,可以删除元素的队列一端则称为队首
importqueue
q= queue.Queue() #队列对象
q.put(1) #往队列存元素
q.put(2)
q.put('a')
q.put([1,2,3])print(q.get()) #1 取元素
print(q.get()) #2
print(q.get()) #a
2、双端队列(双端列表)
#list的缺点:list在插入元素(insert)的时候是非常慢的,因为你插入一个元素,那么此元素后面的所有元素索引都得改变,#当数据量很大的时候,那么速度就很慢了。#双端队列:可以弥补List的这个缺点#双端队列:deque除了实现list的append()和pop()外,还支持appendleft()和popleft(),这样就可以非常高效地往头部添加或删除元素。
from collections importdeque
dq= deque([1,2,3])
dq.append(4)
dq.append(5)
dq.appendleft(6)print(dq) #deque([6, 1, 2, 3, 4, 5])
print(dq.pop()) #5
print(dq.popleft()) #6
四、有序字典
python3.6之前,字典的Key是无序的(3.6之后字典默认有序,无需用此方法,但是很多公司未必都是在用3.6的版本), 在对dict做迭代时,我们无法确定Key的顺序,如果要保持Key的顺序,可以用OrderedDict。
首先说明一下普通字典的创建,可以使用面向对象的方式创建
#普通字典的创建方式
dic1 = dict({'a':1,'b':2}) #括号里面直接写字典
dic2 = dict([('c',3),('d',4)]) #括号里面写列表,列表每一个元素是二元组,每个元组是字典的键和值
print(dic1) #{'a': 1, 'b': 2}
print(dic2) #{'c': 3, 'd': 4}
有序字典的创建
from collections importOrderedDict
order_dic= OrderedDict([('a', 1), ('b', 2)])#也可以这样创建
order_dic2 = OrderedDict({'c': 3, 'd': 4})print(order_dic) #OrderedDict([('a', 1), ('b', 2)])
print(order_dic2) #OrderedDict([('c', 3), ('d', 4)])
order_dic['小明'] = '嘿嘿嘿'
print(order_dic) #OrderedDict([('a', 1), ('b', 2), ('小明', '嘿嘿嘿')])
五、其他
1、namedtuple:可命名元组
from collections importnamedtuple
time= namedtuple('My_time', ['hour', 'minute', 'second'])
t1= time(17, 50, 30)print(t1) #My_time(hour=17, minute=50, second=30)
print(t1.hour) #17
print(t1.minute) #50
print(t1.second) #30
#可命名元组非常类似一个只有属性没有方法的类,#这个类最大的特点就是一旦实例化不能修改属性的值,#可命名元组不能用索引取值了,只能用属性取值,#['hour', 'minute', 'second']是对象属性名,#My_time是类的名字,而time就相当于把一个类赋值给一个变量(变量复用地址而已,实际上还是那个类)
2、defaultdict:为字典设置默认值
from collections importdefaultdict
dic= defaultdict(list) #为字典设置默认值为空列表(defaultdict里面的参数必须是可调用的)#dic = defaultdict(1) # 报错,因为数字 1 不可调用
print(dic['a']) #[]
dic['b'].append(2)print(dic['b']) #[2]
#可与匿名函数结合使用,设置任何默认值
dic = defaultdict(lambda: 'none') #lambda返回什么值都可以
print(dic['a']) #none
print(dic) #{'a': 'none'}
dic['b'] = 2
print(dic) #{'a': 'none', 'b': 2}
#例子:有如下值集合 [11,22,33,44,55,66,77,88,99,90],将所有大于 66 的值保存至字典的第一个key中,#将小于 66 的值保存至第二个key的值中。#即: {'k1': 大于66 , 'k2': 小于66}#1、用正常的字典做
lst = [11, 22, 33, 44, 55, 66, 77, 88, 99, 90]
dic={}for num inlst:if num > 66:if 'k1' not indic:
dic['k1'] =[num]else:
dic['k1'].append(num)elif num < 66:if 'k2' not indic:
dic['k2'] =[num]else:
dic['k2'].append(num)print(dic)#2、使用字典的默认值
from collections importdefaultdict
lst= [11, 22, 33, 44, 55, 66, 77, 88, 99, 90]
dic=defaultdict(list)for num inlst:if num > 66:
dic['k1'].append(num)elif num < 66:
dic['k2'].append(num)print(dic)
3、Counter
#Counter类的目的是用来跟踪值出现的次数。它是一个无序的容器类型,以字典的键值对形式存储,#其中元素作为key,其计数作为value。计数值可以是任意的Interger(包括0和负数)。
from collections importCounter
c= Counter('aaasasabssbba')print(c) #Counter({'a': 6, 's': 4, 'b': 3})
本文详细介绍了Python中的单例模式,包括无属性共享、属性共用和线程安全的实现方式。接着讨论了栈(自定义和Python内置LifoQueue)和队列(普通队列与双端队列deque)的数据结构。最后,文章讲解了有序字典OrderedDict的使用,并提到了namedtuple和defaultdict这两个实用的数据结构工具。
1211

被折叠的 条评论
为什么被折叠?



