声明:旨在自学一些物理概念和计算方法后整理的笔记和心得,本文基于Kotze先生的Introduction to Monte Carlo methods for an Ising Model of a Ferromagnet 文章做了机械无脑式的翻译,不做任何商业用途,仅供学习交流之用。
原文链接https://arxiv.org/abs/0803.0217v1arxiv.org
Kotze的这篇文章主要分三个部分:
一、理论和背景介绍
二、计算结果展示
三、程序代码
首先,
1 理论
1.1 引言
文章讨论是对使用蒙特卡罗模拟来评估铁磁体的可观察性的一种有用方法的介绍。主要背景是关于这种随机方法的相关性和有效性,特别是Metropolitan - Hastings算法的适用性。重要的是,本文强调了自发磁化的潜在破坏性影响,并研究了避免这种影响的方法。
引入了一种伊辛模型,用于研究二维铁磁体在不同温度下的磁化强度和能量的性质。计算了观测值,并对临界温度下的相变作了说明和评价。最后通过有限尺度尺度分析确定临界指数,并利用不同格点尺寸的累积量比计算出居里温度。模拟结果与精确计算结果进行了比较,验证了数值计算过程的正确性。所使用的代码的副本,用c++编写的,在通用公共许可证下可免费使用和修改。
1.2 背景
在大多数普通材料中,相关的原子磁偶极子的方向是随机的。实际上,这种非特异性分布不存在整体的宏观磁矩。然而,在某些情况下,如铁,磁矩产生的结果,首选排列的原子自旋。
这一现象基于两个基本原理,即能量最小化和熵最大化。这些是相互竞争的原则,在缓和总体影响方面很重要。温度是这些对立元素之间的中介,并最终决定哪一个更占优势。
能量最小化和熵最大化的相对重要性在本质上是由一个特定的概率决定的
...(1)
如图1所示,称为吉布斯分布。图1,该图展示了变化能量(E)和温度(T)的玻尔兹曼概率分布。
1.3 模型
理解这个理论的一个关键因素是自旋和相关的磁矩。知道了自旋是一种量子力学现象,就很容易预测,对这个问题的完整而彻底的阐述将需要自旋和角动量的量子规则。这些因素被证明是不必要的复杂因素。
因此,我们引入一个模型来获得有用的结果。模型的核心思想是将问题的复杂性简化到数学上易于处理的程度,同时保留系统的基本物理性质。伊辛模型非常有效地做到了这一点,甚至允许一个良好的概念性理解。图2,一个伊辛模型的二维格图。向上和向下的箭头分别表示一个正自旋和一个负自旋。
伊辛模型考虑了二维的问题,并将偶极子自旋放置在规则的格点上,同时限制其自旋轴为上(+y)或下(-y)。晶格构型是正方形,尺寸为L,自旋总数等于
。在最简单的形式中,偶极子之间的相互作用范围被限制在最近邻的位置。这就产生了一个特定自旋位置的哈密顿量,Hi
...(2)
最近邻之间的耦合常数用 J 表示,
和
分别为最近邻自旋。模型中相互作用的性质全部包含在相互作用耦合常数J的符号中。如果J是正的,就意味着该材料具有铁磁性(平行排列),而负号则意味着该材料是反铁磁性的(倾向于反平行排列)。在我们的讨论中,J 将被取为+1自旋向上的值为+1自旋向下的值为-1。更进一步的简化是,
被认为是一个单位。图3显示了自旋最近邻居的相对位置,黑点被其周围邻居相互作用。图3,近邻耦合。位于(x,y)位置的黑点,正受到距离它一个晶格间距的最近点的相互作用。
为了最大化晶格边缘自旋的相互作用,它们被制成与晶格相对边缘的自旋相互作用。这被称为周期边界条件(periodic boundary condition),如果我们考虑将二维格点折叠成一个自旋在该拓扑结构表面上的三维环面,就可以更好地表现出来。图4,一个三维环面的图解,它是具有周期边界条件的二维格点的代表。
1.4 计算问题
在一个辛模型的帮助下,我们可以继续为可观测的问题寻求解决方案。如果系统每一种可能状态的能量被指定,那么波尔兹曼分布函数,方程(1),给出了系统处于每一种可能状态(在给定温度下)的概率,因此通过概率求和可以计算宏观量。这可以用磁化和能量作为例子来说明。对于任何固定状态,径向,当能量由哈密顿量(2)给出时,磁化强度与过量的向上或向下的自旋数成正比。
本文介绍了使用蒙特卡洛方法计算二维铁磁体的居里温度,通过理论背景、计算结果和代码实现详细阐述。文章探讨了蒙特卡洛模拟在解决伊辛模型中的应用,特别关注了Metropolis-Hastings算法,并讨论了相变、磁化强度和能量的计算,以及居里温度的确定。
最低0.47元/天 解锁文章
325

被折叠的 条评论
为什么被折叠?



