mstem函数怎么定义_第四讲 函数的极限

写在前面的话:

久等了,这两天忙于工作,没有大量时间更文,不过我每天仍然会码一些字。

关于函数极限的定义,大家似乎在刚学高数的时候很困扰,不要担心,只要认真去理解,多花时间反复研读定义,你一定会有所收获,我的这篇文章也会帮助你理解它。这两天收到了大家的反馈,我很高兴你们能支持我,同时细心的你们也给我提出了几处失误,我一一改正了。失误是难免的,以后我尽量规避,同时也请你们发现时及时提出。

如果你已经看了我前面两节关于数列极限(戳我了解)的内容,相信你一定会很容易理解本讲内容,如果你还没有看过,本人也墙裂...墙裂...建议你回头看看。多研读几遍,只有这样才能内化为自己的知识。

懂了定义,本讲的其他部分也就迎刃而解了,但是如果你在看本文中的例题时还是有点困难,那么再不厌其烦地回头研读定义吧。我们一起学习吧~

一、自变量趋近于有限值时函数的极限

1.函数极限定义之描述性定义:如果在

的过程中,对应函数值
无限接近于确定的常数
,那么就说
时的极限。记作

那么这个描述性定义怎么精确化,给出函数极限的精确定义呢?

我们来分析一下什么叫“函数

无限接近于常数
”?

函数

无限接近于常数
,就是
可以任意小,小到什么程度呢?就是可以小到你事先任意给定的任意小正数
,即
。所以我们说
无限接近于常数
,是用
来刻画的。

无限接近于常数
,是在哪个过程中实现的呢?

是在

的过程中实现的。所以只是对
附近的(或者说无限接近于
的)那些点,函数值满足
为任意给定的正数,可以任意小)。那么对
附近的
,我们怎么刻画呢?我们可以这样刻画:
为某一个正数,用几何意义来说就是,在
的某一个去心邻域内(戳我了解)所有点的函数值满足不等式
。这就是“在
的过程中,对应函数值
无限接近于确定的常数
”的实质。

这样我们就可以轻松理解函数极限的精确定义了:

2.函数极限定义之精确定义:

语言):设
在点
的某个去心邻域内有定义,如果对于任意给定的正数
,总存在一个正数
,使对于适合不等式
的一切
,对应的函数值
满足
,那么称常数
为函数
时的极限,记作

注:(1)定义中

表示
,所以即使
没有定义,
点也可以有极限。因为我们研究极限是研究
过程中
的变化趋势,而与
处有无定义没有关系。

(2)

的取值与
有关,且
不唯一。也就是说,任意给一个
就会有一个
与之对应,换一个
就换一个
,这一点和数列极限中的
是一样的。

(3)

的几何解释:
等价于
。对于任意给定的
,存在
去心邻域
,当
图像上的点横坐标落在
去心邻域
内,这些点的纵坐标满足
。即这些点落在下图中的红色虚线矩形框内:

419395428369730866b8fe5716a9df85.png

利用极限的定义证明函数的极限:

例1:证明

,此处
为常数。

证明:根据极限定义,对任给的

,由于
,取
是任意的正数,都有当
时,
。故

例2:证明

证明:根据极限定义,对任给的

,由于
,为使
,只要
。取
,则当
时,
。故

例3:证明

证明:根据极限定义,对任给的

,由于
,为使
,只要
。取
,当
时,有
。故

例4:证明

虽然

处没有定义,但是根据函数极限的定义我们知道,这并不影响
处有极限。

证明:对于任给的

,要使
,只需
,取
,则当
时,
,故

例5:证明当

时,

证明:对于任给的

,要使
,只需使
,且函数只有在
时才有意义,故又有
。取
,则当
时,
。故

3.极限的局部保号性定理

定理1:如果

,且
,那么存在
的去心邻域,当
在该邻域时,有

这个定理其实不难理解,我们知道

,且
,就是说当
趋近于
时,
趋近于一个大于
的数
。这样的话函数
的某个小的去心邻域内也应大于
,否则它不可能无限接近于一个大于
的常数
时是同样的道理。下面我们来证明这个定理:

证明:因为

,且
,根据极限的定义中
的任意性,仅仅针对此问题而言,我们不妨特意给定一个
它满足
,那么肯定会存在一个相应的
的去心邻域
,使当
时,
,即
①,又因为我们给定的
满足
,结合不等式①的左侧可知
。证毕!

定理1':如果

,那么必存在
的某去心邻域,当
在该邻域时,有

证明:因为

,根据函数极限的定义,对给定
,必然有
,使当
时,
,由绝对值不等式的特点,可以进一步有
,所以
。证毕!

定理2:如果在

的某个去心邻域内
,而且
,那么

该定理的证明需要利用定理1的结论。下面我们来证明,

证明(反证法):存在

的某个去心邻域,使该邻域内
,则极限值
。若不然,假设
,根据
定理1,存在
的某个去心邻域,使当
在该邻域内时,
,这与题设矛盾。证毕!

定理1和定理2都叫函数极限的局部保号性定理,这个定理在今后推导其它定理时是非常有用的,所以还请重视!

例题.证明:如果函数

时的极限存在,则函数在
的某去心邻域内有界(戳我了解函数有界)

证明:设

,根据函数定义,对给定的
,有
,使当
时,
,而
,令
,则当
时,
。故存在
的某去心邻域,使该邻域内函数
有界。

注:此例中,反之不成立(函数在

的某去心邻域内有界,但是在
处不一定有极限)。比如
的函数值的绝对值始终小于等于
,有界。但是它在
处的极限值不存在,这在后面第九讲(戳我了解)中有解释。此处只要明白这一点即可。

4.单侧极限

写在前面的话:我们需要知道当

趋近于某个常数时,
可以从左侧趋近于
,也可以从右侧趋近于
,所以我们有必要讨论一下函数
的单侧极限的定义:

如果对任给的

,总存在
,当
时,
,那么称
时的
左极限,记作

如果对任给的

,总存在
,当
时,
,那么称
时的
右极限,记作

函数极限与单侧极限的关系:

时,函数
极限存在的充分必要条件是函数
左极限、右极限都存在并且相等。

证明:(必要性)设

,根据函数极限的定义,对任意给定的
,有
,使当
时,
,这样就理所当然有:

时,有
,即

时,有
,即

从而

(左右极限存在且相等)。

(充分性)设

,根据单侧极限的定义,可知:

对任给的

,有
,当
时,
;

对任给的

,有
,当
时,
。取
,则当
时,有
,从而
,即

例题:证明函数

时,没有极限。

证明:左极限

,右极限
。由于左右极限不相等,故
不存在。

从这个题可以看出,讨论左右极限的存在性也是证明函数极限存在的重要依据,尤其对于分段函数而言,对于左右极限的讨论尤为重要。


二、自变量趋近于无穷大时函数的极限

首先我们先搞清楚如下两个问题:

趋近于无穷大:
,指
无限增大。

:是指当
无限增大时,
无限接近于

这样我们就很容易理解自变量趋近于无穷大时函数极限的定义了,如下:

定义:设函数

大于某一正数时有定义。如果对于任意给定的正数
,总存在正数
,使当
时,不等式
恒成立,则称
时的极限,记作
。(这是不是很像数列极限(戳我了解)的定义?)

同样,自变量趋近于无穷大时函数的单侧极限定义如下

定义为:如果对于任意给定的正数
,总存在正数
,使当
时,不等式
恒成立,则称
时的极限。

定义为:如果对于任意给定的正数
,总存在正数
,使当
时,不等式
恒成立,则称
时的极限。

注:

①值得一提的是

的充分必要条件是

的几何解释为:对任给的
,总存在正数
,使当
时,
的图像位于直线
之间。

例题:证明

证明:根据极限定义,对任给的

,要使
,只需
,取
,则当
时,
,故

下面我们来看看这个函数的图像,当

时,函数值越来越接近于
,当
时,函数值也越来越接近于
。如下:

26665775b909c467bbb119d8211b887b.png

一般地,如果

,则称
是函数
水平渐近线。在上图中,
的水平渐近线。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值