极限中0除以常数_第七讲 极限存在准则和两个重要极限

写在前面的话:

本文主要内容是两个极限存在准则,以及由这两个准则推出的两个重要极限。以后解题可以直接用此重要极限。还有就是注意数列与函数之间的联系,它们在很多时候都是互通的。

另外,如果发现错误之处,欢迎指出,我会及时完善。大家一起学习吧~

准则

(夹逼准则):

如果数列

满足下列条件:

那么

有极限且

证明:根据准则中的条件②:

,可由极限定义知:

,由于
,因此存在
,使当
时,
亦即
;

,因此存在存在
,使当
时,
亦即
;

,不等式
均成立,分别取不等式
的左半侧和右半侧有
,再结合条件①
,可得
。我们把带有下划线的文字连成一句话:对任意给定的
,存在
,当
时,
。这不就是数列极限定义嘛~所以推出
。证毕!

以上是关于数列的夹逼准则,我们可以把它推广到函数,如下:

准则

如果函数

满足下列条件:

(或
)时,

(或

那么

存在,且
(或
存在且
)。

证明过程与数列夹逼准则类似,这里不再赘述。

重要极限1:

证明:此函数分母的极限为

,所以不能直接用极限商的运算法则来证明。我们可以用夹逼准则来证明:

如下图单位圆中,令

,点
的切线与
的延长线交于
,则线段
、弧
和线段
的长度分别满足:
,由于
面积(
扇形
的面积(
的面积(
),所以有
同时除以

由于用

代替
时,
值不变,所以 当
时,
也成立。这样就得出,当
,下面我们根据夹逼准则证明当
时,不等式两侧的
的极限为
,便得出
极限也为
。下面来证明

时,

由于

根据夹逼准则
,而根据极限差的运算法则
因此

由于

,根据夹逼准则
,即得
,证毕!

dc77642f5ac9b3138631e4c79245882f.png

例题:

1.求

解:

2.

解:

准则

(单调有界原理):

单调有界数列必有极限。

单调增数列:

单调减数列:

单调增数列和单调减数列统称为单调数列。

:(1)在数列极限的性质那一讲中,收敛数列的有界性提到(戳我了解):数列有极限(收敛)则一定有界,但是数列有界却不一定有极限,应该补充为,数列单调且有界才有极限(收敛)。

(2)对于准则

的几何解释为(以单调增数列为例):

数列单调增加有两种情况,情况①为,数列每一项的值不断增大,一直趋向于无穷大;情况②是数列每一项值不断增大,但是最终不断趋向于某一个常数

。所以如果单调增数列有界的话就不可能为情况①,只能是情况②。

重要极限2:

首先我们证明当

取正整数
而趋近于
的情形,这样就产生了一个数列。

设数列通项为

,我们来证明数列
单调增加且有界。根据二项式定理(戳我了解)展开:

最终化简可得:

类似地,

比较

的最终展开式,可以看到除了前两项均为
外,在后面的所有项中,
的每一项都小于
的对应项,并且仔细观察可以看出,
还比
多出最后一项
,该项的值是大于
的,因此
,故数列
是严格
单调增加的(戳我了解严格单调与单调的关系)

另外还可证明数列

是有界的,因为把
的展开式中各项括号内的数用较大的数
代替,得

这说明数列

有界,又因为之前证明其单调,所以单调有界,根据准则
,这个数列极限存在,通常用字母
表示它,即
。证毕!

注:① 可以把该数列极限推广到函数

,有
书上注解中有证明,自己好好琢磨。

②可以证明无论是

还是
函数
的极限都存在,且为
。(书上注解)

是无理数,跟指数函数
和自然对数
的底
是同一个常数。

④ 利用复合函数的极限运算法则,把表达式

中的
代换为
,当
时,
,由复合函数的极限运算法则:
。其实无论是
还是
它们的共同点是当指数部分趋向于无穷大,括号内第二项趋向于无穷小,二者形式上互为倒数,那么极限为

例题:

解:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值