c语言全排列算法_五大常见算法策略之——递归与分治策略

递归与分治策略

递归与分治策略是五大常见算法策略之一,分治策略的思想就是 分而治之 ,即先将一个规模较大的大问题分解成若干个规模较小的小问题,再对这些小问题进行解决,得到的解,在将其组合起来得到最终的解。而分治与递归很多情况下都是一起结合使用的,能发挥出奇效(1+1>2),这篇文章我们将先从递归说起,再逐渐向分治过渡,主要讲解方式是通过9个例题来说明问题的,问题都是根据难度由简到难,由浅入深,对递归与分治能有个大概的了解雏形,当然最重要还是要做大量练习才能掌握。

0.0、Fibonacci数列(易)

递归

我们第一次接触递归一般都是在初学C语言时候的一道题目——Fibonacci数列中看到的,可能刚开始感觉有点不可思议,函数居然可以调用自己!Amazing!但事实如此,它确实存在,而递归也为我们某些算法的设计提供很大的便利,一般来说递归函数在理解起来并不是很难,甚至可以通过数学归纳法给予证明,但一直让人诟病的一点莫过于Debug的时候了,有时候调试一个较为复杂的递归函数能把人逼疯。

我们在这里将会 由易到难 ,用一些例题先来讲解递归函数。采用Fibonacci数列来做这个引例来介绍递归函数。

Fibonacci

第一个数是1,第二个数也是1,从第三个数开始,后面每个数都等于前两个数之和。要求:输入一个n,输出第n个斐波那契数。

我们先来整理一下思路,分下面三步来看:

  • 1、明确函数的输入和输出(即函数的作用)
  • 2、明确递归终止条件
  • 3、寻找函数的递归关系式

第一步,函数输入n,输出(也就是返回)第n个斐波那契数:

public static int fibonacci(int n){        }

第二步,明确递归终止条件:

public static int fibonacci(int n){    if(n == 1) return 1;    else if (n == 2) return 1;}

第三步,寻找函数的递归关系:

public static int fibonacci(int n){    if(n == 1) return 1;    else if(n == 2) return 1;    else return fibonacci(n - 1) + fibonacci(n - 2);}

就这样,我们的一个斐波那契数列的递归函数就写完了。当然,这只是我们的一个开胃小菜,下面继续是入门级别的一个题,算阶乘。

阶乘

输入一个数,输出它的阶乘。我们同样用那三步往下走。

第一步,函数输入n,返回n的阶乘

public static int factorial(int n){     }

第二步,明确递归终止条件:

public static int factorial(int n){                     //0的阶乘等于1        if(n == 0)  return 1;}

第三步,寻找函数的递归关系

public static int factorial(int n){                     //0的阶乘等于1        if(n == 0)  return 1;        else return factorial(n - 1) * n;}

做完前两个你肯定会觉得这不是很简单吗,不要急,我们要由易到难,由浅入深,这样阶梯式的科学学习。下面这个例子是小青蛙跳台阶问题,这个问题被用于递归和动态规划类问题的例题,我们这里先用递归解答,后面还会用动态规划策略来解决这个问题。

小青蛙跳台阶

一只青蛙一次可以跳上1级台阶,也可以跳上2级,求该青蛙跳上一个n级的台阶共有多少种跳法。

还是三步走,第一步,明确函数的输入及返回

public static int Jump_Floor1(int n){    }

第二步,明确递归终止条件

如果n=1,那小青蛙只能一次跳上第一节台阶,所以一种跳法,如果n=2,那小青蛙可以一次跳一节跳两次,或者直接一次跳两节,所以两种跳法。

public static int Jump_Floor1(int n){        if(n <= 2){            return n;        }}

第三步,寻找函数的递归条件

这里可不能简单的return Jump_Floor1(n-1)就完事儿了,分了两种情况:1、第一次跳1级就还有n-1级要跳,2、第一次跳2级就还有n-2级要跳

public static int Jump_Floor1(int n){    if(n <= 2){        return n;    }else{  //这里涉及到两种跳法,1、第一次跳1级就还有n-1级要跳,2、第一次跳2级就还有n-2级要跳    return Jump_Floor1(n-1)+Jump_Floor1(n-2);    }}

下面这个例题是排列问题,就是求出一组数的全排列。

全排列问题

我们在全排列问题种需要用到一个交换函数swap用于交换两个数的位置,作如下定义:k数组种元素为待排列元素,k和m为待交换两元素的下标

private static void swap(int a[], int k, int m){       //交换k和m下标的元素的值        int temp = a[k];        a[k] = a[m];        a[m] = temp;}

接下来继续回到递归函数

第一步,明确函数的输入以及返回,这里我们需要输入待排列元素组成的数组,数组的第一个元素的下标,以及最后一个元素的下标

public static void perm(int a[], int k, int m){}

第二步,明确递归终止条件,就是当只剩下一个元素时

public static void perm(int a[], int k, int m){    if(k == m) {     //只有一个元素        for (int i = 0; i <= m; i++) {            System.out.print(a[i]+" ");        }        System.out.println();    }}

第三步,寻找递归条件

public static void perm(int a[], int k, int m){    if(k == m) {     //只有一个元素        for (int i = 0; i <= m; i++) {            System.out.print(a[i]+" ");        }        System.out.println();    }else{          //还有多个元素,递归产生排列        for (int i = k; i <= m; i++) {            swap(a,k,i);                //排列到这个元素就要将其放在第一个位置            perm(a,k+1,m);            swap(a,k,i);                //从此出口出去后还需要将刚刚调换的位置换回来        }    }}

下面是递归这块的最后一个例题了,整数划分问题。

整数划分

说明一下问题,什么是整数划分?

  • n=m1+m2+...+mi; (其中mi为正整数,并且1 <= mi <= n),则{m1,m2,...,mi}为n的一个划分。
  • 如果{m1,m2,...,mi}中的最大值不超过m,即max(m1,m2,...,mi)<=m,则称它属于n的一个m划分。这里我们记n的m划分的个数为f(n,m);
  • 举个例子,当n=5时我们可以获得以下这几种划分(注意,例子中m>=5)
    5 = 5
    = 4 + 1
    = 3 + 2
    = 3 + 1 + 1
    = 2 + 2 + 1
    = 2 + 1 + 1 + 1
    = 1 + 1 + 1 + 1 + 1
    编写程序,输入整数n,m,返回n的所有m的划分个数。

算法思路:我们用q(n,m)表示将n用不大于m的数字划分的方法的个数

  • 1、n = 1时:只有一种划分法就是1
  • 2、m = 1时:也只有一种划分法就是n个1相加
  • 3、n < m时: 划分的方法也就只限于q(n,n)了,毕竟比n大的数也取不到嘛(不能取负数,要不然无限多了)
  • 4、n = m时:就是1+(m-1)这一种情况加q(n,m-1)即1+q(n,m-1)。比如q(6,6)就是1+q(6,5)
  • 5、n > m时:这种情况下又包含两种情况:
    5(1)、划分中包含m时:即{m, {x1,x2,...xi}}(它们之和为n), 其中{x1,x2,... xi} 的和为n-m,所以就是n-m的m划分,即q(n-m,m)
    5(2)、划分中不包含m时:划分中所有的值都比m小,即q(n,m-1)
  • 因此第5中情况的划分为q(n-m,m)+1(n,m-1)
  • 对第2中举例子详述:q(5,3):
    (1)包含3: 1+1+3; 2+3; 既然每种情况都包含了3,那去掉3对其余各数相加为(5-3=)2的划分的个数和其相等,那就是对2(m=3)的划分了
    (2)不包含3: 1+1+1+1+1; 1+1+1+2; 1+2+2;

第一步,明确函数输入和返回

public static int equationCount(int n, int m){}

第二步,明确递归终止条件

public static int equationCount(int n, int m){        if (n < 1 || m < 1)            return 0;        if(n == 1 || m == 1)            return 1;}

第三步,寻找递归关系

public static int equationCount(int n, int m){        if (n < 1 || m < 1)            return 0;        if(n == 1 || m == 1)            return 1;        if(n < m)            return equationCount(n,n);        if(n == m)            return equationCount(n,m-1)+1;        return equationCount(n-m,m)+equationCount(n,m-1);   //n > m的情况}

分治策略

分治策略的基本思想就是将一个规模为n的问题分解成k个规模较小的子问题,这些子问题互相独立且与原问题相同。递归的解这些子问题,然后将子问题的解合并得到原问题的解,和这种说法最贴切的就是我们之前一篇文章介绍的归并排序法了,这篇文章里我们还会再引出一遍。

我们将分治策略解决问题的步骤归纳为:将大问题分解成子问题,分别解决子问题,再将子问题的解合并成大问题的解.

先看第一个典型的例子——归并排序

归并排序

这里我们对归并排序主要注重体现它分治策略的算法逻辑,而不过多深究这个排序算法是如何执行的,具体的图解归并排序请移步我的另一篇博文—— 数据结构之——八大排序算法

归并排序的思想是,先将数组分割成为一个个小数组,直到每个小数组中只含有一个元素,那么在这一个小数组里面,这一个元素自然就是有序的,然后将其合并起来(由merge函数实现),按从小到大的顺序,逐层向上,就是将小问题的解合并为大问题的解。

下面是将大问题分解成小问题的过程

/** * 只要数组的大小不为1,就一直分割,直到不能分割为止(即数组长度为1), * 不能分割后按照出入栈顺序,会将分割的小数组分别排序后归并起来 * @param data      待排序数组 * @param start     起始位置 * @param end       终止位置 */public static void merge_sort(int data[], int start, int end){    int mid = (start+end)/2;    if(start < end){        merge_sort(data,start,mid);        merge_sort(data,mid+1,end);        merge(data,start,mid,end);    }}

下面是合并小问题的解,归并过程

/** * 这个函数是将数组合并在一起的,其实并没有将数组真的分开,只是用start和end指示不同的元素,来达到分割的目的 * @param  p        指示子数组1的元素 * @param  q        指示子数组2的元素 * @param  r        指示合并后数组的元素 * @param start     start到mid是需要合并的子数组1 * @param mid * @param end       mid+1到end是需要合并的子数组2 */private static void merge(int data[], int start, int mid, int end){    int p = start, q = mid+1, r = 0;    int newdata[] = new int[end-start+1];    while(p <= mid && q <= end){        if(data[p] >= data[q]){                 //从大到小排序            newdata[r++] = data[p++];        }else{            newdata[r++] = data[q++];        }    }    //此时,两个子数组中会有一个中元素还未被全部归并到新数组中,作如下处理    while(p <= mid){        newdata[r++] = data[p++];    }    while(q <= end){        newdata[r++] = data[q++];    }    //再将有序的数组中的值赋给原数组,其实也可以直接返回这个新数组    for (int i = start; i <= end; i++) {        data[i] = newdata[i-start];    }}

二分查找

然后是分治策略的另一个经典例子———二分查找,顾名思义,就是在一个有序(从小到大)的数组中查找一个元素的位置,先从最中间将数组变为两个小数组,然后与中间值进行对比,如果相等直接返回,不相等又分两种情况,如果中间元素比待查找值小,就从后半个数组中继续二分查找,反之,从前半个数组中二分查找。

public static int Binary_Search(int []data, int x, int n){   //data为待搜索数组(有序),x为待搜索元素,n为数组大小    int left = 0, right = n - 1;            //指示左右的两个指示器    while(left <= right){                   //left可以等于right,因为有可能刚好两个指示器同时指示到了待查找元素上        int mid = (left+right)/2;        if(data[mid] > x)            right = mid-1;        else if(data[mid] < x)            left = mid+1;        else    return mid;    }    return -1;           //表示查找失败}

棋盘覆盖

下面我们逐渐加大难度,接下来这个问题叫做棋盘覆盖,我们先简单介绍一下这个问题。

在一个2^k × 2^k (k≥0)个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为特殊方格。显然,特殊方格在棋盘中可能出现的位置有4^k种,因而有4^k种不同的棋盘,图4.10(a)所示是k=3时64种棋盘中的一个。棋盘覆盖问题(chess cover problem)要求用图4.10(b)所示的4种不同形状的L型骨牌覆盖给定棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不得重叠覆盖。

7cd9b255fd4185c9f0a79179710d1ab4.png

图4.10(a)

7e379d089bfad825c7af7aa8a6d232b4.png

图4.10(b)

在这里为了方便讲解,我们采用k=2时候的情况来说明这个问题,设初始情况为

60ab3acd699716dc740add56e18d83da.png
第一次将其分割成四个小块,分成了四个子棋盘,以黄线为分割线
eae0f8332f7b66012a3f8a0127a8e6fa.png
然后分别对其进行填充
b50c83d79783e90573b14a31a0ccac80.png
填充完后,又可以将其分割
747f1b38c01d1ee329b0f69c276b092b.png
重复上述填充操作,即可对所有方格填充
275be58c7ad1f8596bcc706c92cc9a4c.png

当k更大的时候的过程可以参考这位大佬的博客 棋盘覆盖问题 ,接下来我们用代码实现。

static int board[][] = new int[4][4];   //棋盘static int tag = 1;                     //骨牌编号/** * 分治算法典例2———棋盘覆盖问题 * @date    2019/11/3   afternoon * @param tr    棋盘左上角方格的行号 * @param tc    棋盘左上角方格的列号 * @param dr    特殊方格所在的行号 * @param dc    特殊方格所在的列号 * @param size  棋盘宽度 * @param s     当前棋盘宽度的一半 * @param tr+s  当前棋盘中间行的行号 * @param tc+s  当前棋盘中间列的列号 */public static void chess(int tr, int tc, int dr, int dc, int size){    if(size == 1)        return;    int newtag = tag++;    int s = size / 2;     //分割棋盘    //覆盖左上角子棋盘    if(dr < tr+s && dc < tc+s){ //特殊方格在此棋盘中        chess(tr,tc,dr,dc,s);    }else{      //此棋盘中无特殊方格        board[tr+s-1][tc+s-1] = newtag;        chess(tr,tc,tr+s-1,tc+s-1,s);    }    //覆盖右上角子棋盘    if(dr < tr+s && dc >= tc+s){        chess(tr,tc+s,dr,dc,s);    }else{        board[tr+s-1][tc+s] = newtag;        chess(tr,tc+s,tr+s-1,tc+s,s);    }    //覆盖左下角子棋盘    if(dr >= tr+s && dc < tc+s){        chess(tr+s,tc,dr,dc,s);    }else{        board[tr+s][tc+s-1] = newtag;        chess(tr+s,tc,tr+s,tc+s-1,s);    }    //覆盖右下角子棋盘    if(dr >= tr+s && dc >= tc+s){        chess(tr+s,tc+s,dr,dc,s);    }else{        board[tr+s][tc+s] = newtag;        chess(tr+s,tc+s,tr+s,tc+s,s);    }}

接下来的问题依然有一些难度,叫做打印日程表问题。

日程表问题

问题:设有n=2^k个选手参加循环赛,要求设计一个满足以下要求比赛日程表:

1)每个选手必须与其它n-1个选手各赛一次;

2)每个选手一天只能赛一次。

分析,按照上面的要求,可以将比赛表设计成一个n行n-1列的二维表,其中第i行第j列的元素表示和第i个选手在第j天比赛的选手号。

采用分治策略,可将所有参加比赛的选手分成两部分,n=2^k 个选手的比赛日程表就可以通过n=2^(k-1) 个选手的的比赛日程表来决定。递归的执行这样的分割,直到只剩下两个选手,比赛日程表的就可以通过这样的分治策略逐步构建。

说个大白话就是:先默认构造日程表第一行,即0,1,2,3,...然后先分割日程表,将左上角复制到右下角,右上角复制到左下角

初始化第一行不做赘述,让chess[0][i] = i+1即可

下面在Excel中用图示做一演示

9e771fda7368c5de393eee4980c9473b.png
558525af36841ff857b80666f78ecd94.png
298721b995907bf99199429584ed8bbb.png
5a3d20fdd8ea73e10f9b8c4d4292b7a4.png
604e05608da7fc81f8381a5fa685ad9b.png
111c11064208ed122c25275249dc1286.png
beb146e226d40106e12f8f14267f2a9b.png

代码实现

/** * 将比赛日程表设计成n行n列,表中除了第一列,其他n-1列才是我们要的,数组下标行列都从0开始,第i行j列代表第(i+1)位选手在第j天的对手: * 表格初始化会将第一行按1到n一次填充,然后递归填充下面的,用左上角和右上角分别去填充右下角和左下角,因为要是对称矩阵(具体原因好好想想) * @param p     表示行序号 * @param q     表示列序号 * @param t     表示当前传进函数方格的规模也就是大小 * @param arr   表格 */public static void arrange(int p, int q, int t, int arr[][]){    if(t>=4){           //如果规模大于4,就继续递归        arrange(p,q,t/2,arr);        arrange(p,q+t/2,t/2,arr);    }    //填左下角    for(int i=p+t/2;i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值