python读取nc文件并转换成csv_使用Python将NetCDF文件转换为CSV或文本

这篇博客介绍了如何使用Python的netCDF4和pandas库将NetCDF文件转换为CSV。内容包括读取NetCDF文件中的纬度、经度、时间和降水数据,然后创建一个时间序列DataFrame并将其保存为CSV文件。
摘要由CSDN通过智能技术生成

I'm trying to convert a netCDF file to either a CSV or text file using Python. I have read this post but I am still missing a step (I'm new to Python). It's a dataset including latitude, longitude, time and precipitation data.

This is my code so far:

import netCDF4

import pandas as pd

precip_nc_file = 'file_path'

nc = netCDF4.Dataset(precip_nc_file, mode='r')

nc.variables.keys()

lat = nc.variables['lat'][:]

lon = nc.variables['lon'][:]

time_var = nc.variables['time']

dtime = netCDF4.num2date(time_var[:],time_var.units)

precip = nc.variables['precip'][:]

I am not sure how to proceed from here, though I understand it's a matter of creating a dataframe with pandas.

解决方案

I think pandas.Series should work for you to create a CSV with time, lat,lon,precip.

import netCDF4

import pandas as pd

precip_nc_file = 'file_path'

nc = netCDF4.Dataset(precip_nc_file, mode='r')

nc.variables.keys()

lat = nc.variables['lat'][:]

lon = nc.variables['lon'][:]

time_var = nc.variables['time']

dtime = netCDF4.num2date(time_var[:],time_var.units)

precip = nc.variables['precip'][:]

# a pandas.Series designed for time series of a 2D lat,lon grid

precip_ts = pd.Series(precip, index=dtime)

precip_ts.to_csv('precip.csv',index=True, header=True)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值