python分箱_特征工程 - 分箱

卡方分箱

python自带分箱函数  --  无法实现对分类型数据的分箱,可借助卡方分箱算法实现

import numpy as np

import pandas as pd

data = np.random.randint(100, size=(10000,))

#自定义分箱

#cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False, duplicates='raise')

pd.cut(data, bins=[0, 10, 20, 50, 70, 100], right=False)

#等宽分箱

pd.cut(data, bins=5, right=False, labels=range(5))

#等频分箱

#qcut(x, q, labels=None, retbins=False, precision=3, duplicates='raise')

pd.qcut(data, q=5, labels=range(5))

#等频分箱 - 老版本重复值过多报错问题

'''该代码倾向于将重复值全划分到更高的组,自带的qcut则倾向于将其划分到更低的组'''

def pct_rank_qcut(series, n):

'''

series:要分箱的列

n:箱子数

'''

edages = pd.Series(range(1,n+1))/n #转换成百分比

func = lambda x: (edages >= x).argmax() #返回列表中第一次出现true的索引值

return series.rank(pct=1).astype(float).apply(func) #百分位数,返回组下标,数据类型若为object,结果会有问题,因此进行了astype

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值