r语言中Y=aX1-bX2 c是什么意思,R语言方法总结要点

计算描述性统计量:

1、summary():

例:summary(mtcars[vars])

summary()函数提供了最小值、最大值、四分位数和数值型变量的均值,以及因子向量和逻辑型向量的频数统计。

2、apply()函数或sapply()函数

计算所选择的任意描述性统计量。mean、sd、var、min、max、median、length、range 和quantile。函数fivenum()可返回图基五数总括(Tukey’s five-number summary,即最小值、下四分位数、中位数、上四分位数和最大值)。

sapply()

例:mystats

if (na.omit)

x

m

n

s

skew

kurt

return(c(n = n, mean = m, stdev = s, skew = skew, kurtosis = kurt))

}

sapply(mtcars[vars], mystats)

3、describe():

Hmisc包:返回变量和观测的数量、缺失值和唯一值的数目、平均值、

分位数,以及五个最大的值和五个最小的值。

例:library(Hmisc)

describe(mtcars[vars])

4、stat.desc():pastecs包

若basic=TRUE(默认值),则计算其中所有值、空值、缺失值的数量,以及最小值、最大值、值域,还有总和。

若desc=TRUE(同样也是默认值),则计算中位数、平均数、平均数的标准误、平均数置信度为95%的置信区间、方差、标准差以及变异系数。

若norm=TRUE(不是默认的),则返回正态分布统计量,包括偏度和峰度(以及它们的统计显著程度)和Shapiro–Wilk正态检验结果。这里使用了p值来计算平均数的置信区间(默认置信度为0.95:

例:library(pastecs)

stat.desc(mtcars[vars])

5、describe():psych包

计算非缺失值的数量、平均数、标准差、中位数、截尾均值、绝对中位差、最小值、最大值、值域、偏度、峰度和平均值的标准误

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值