在Python的数据可视化库中,采用matplotlib绘制相关图形时,若不加任何设定,一般的x-y坐标轴是不带箭头且是一个封闭的矩形。我们以Sigmoid函数的绘制,给大家展示一下。
import matplotlib.pyplot as plt #导入matplotlib库
import numpy as np #导入numpy库
#生成x步长为0.1的列表数据
x = np.arange(-15,15,0.1)
#生成sigmiod形式的y数据
y=1/(1+np.exp(-x))
#设置x、y坐标轴的范围
plt.xlim(-12,12)
plt.ylim(-1, 1)
#绘制图形
plt.plot(x,y, c='b')
得到的图形为:
从可视化的角度来看,这种图形更多的是给出曲线的形状,特别是其原点并不是(0,0),这导致我们可能很难直观地看到,该曲线的对称性以及在整个坐标内的取值范围。
那么如何采用传统的以(0,0)为原点且带箭头的x-y轴,绘制图形呢?
我们可以引入Matplotlib AxesGrid Toolkit来实现,它是matplotlib的辅助工具,包含一系列对坐标轴设置的框架。其中的axisartist包就用来设置坐标轴的类型。
1.创建画布并引入axisartist工具。
import mpl_toolkits.axisartist as axisartist
#创建画布
fig = plt.figure(figsize=(8, 8))
#使用axisartist.Subplot方法创建一