python的论文_分类 python 下的文章

one_hot_encoder和label_encoder可以处理类别类型的特征。import pandas as pd

from sklearn.preprocessing import LabelEncoder

def one_hot_encoder(df, nan_as_category = True):

original_columns = list(df.columns)

categorical_columns = [col for col in df.columns if df[col].dtype == 'object']

df = pd.get_dummies(df, columns = categorical_columns, dummy_na = nan_as_category)

new_columns = [c for c in df.columns if c not in original_columns]

return df, new_columns

def label_encoder(df):

original_columns = list(df.columns)

categorical_columns = [col for col in df.columns if df[col].dtype == 'object']

for col in categorical_columns:

df[col] = LabelEncoder().fit_transform(df[col].astype('str'))

new_columns = [c for c in df.columns if c not in original_columns]

return df, categorical_columns

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值