特征多项式求解一个矩阵的特征值应该是大家所要掌握的基本功,但是,相信很多同学发现,很多答案的解析,是列出来特征多项式,直接给出因式分解,然后,给出特征值。但是,从特征多项式到因式分解的这个过程有时候就像是一层迷雾一样让很多人头疼不已!
常用的方法有“抵消法”、展开三阶多项式猜想分组分离法和待定系数法!
- “抵消法”:考研范围内的矩阵求特征值,普遍是三阶矩阵,针对三阶实对称矩阵,一般是使用“抵消为0”先凑因式的方法求解,这种方法如果运气不佳,可能要尝试6次,最为致命的是,针对叠加情况,会失效,这种试错率太高,不适合考场使用,(但是如果你第一眼就看出来了,就用吧,因为确实简单!)——具体请查看李永乐老师的视频讲解!
- 分组分离法:需要首先猜想出来一个特征值,一般来说,有经验的同学可以尝试特征值为
等等,如果恰好猜对了一个特征值,剩下的两个特征值迎刃而解;其弊端有很多,1.含参展开计算量大,2.猜想需要足够经验,如果猜不出来&#x
本文介绍了在求解实对称矩阵特征值时,当传统方法如抵消法、分组分离法和待定系数法失效时,可以采用的"代10猜想法"。通过三个三阶矩阵的例子,详细阐述了该方法的计算步骤,强调在确定第一个特征值时,利用质数之积的特点能有效减少试错次数,提高解题效率。这种方法特别适用于考研数学中对三阶矩阵的考察。
最低0.47元/天 解锁文章
6477

被折叠的 条评论
为什么被折叠?



