matlab使用BP神经网络手写数字识别,BP神经网络实现手写数字识别matlab实现 (Matlab implementation of handwritten digit recognition ...

BP神经网络实现手写数字识别matlab实现

BP神经网络实现手写数字识别matlab实现\100-100.jpg

BP神经网络实现手写数字识别matlab实现\AfterAppr_0.bmp

BP神经网络实现手写数字识别matlab实现\AfterAppr_1.bmp

BP神经网络实现手写数字识别matlab实现\AfterAppr_2.bmp

BP神经网络实现手写数字识别matlab实现\AfterAppr_3.bmp

BP神经网络实现手写数字识别matlab实现\AfterAppr_4.bmp

BP神经网络实现手写数字识别matlab实现\AfterAppr_5.bmp

BP神经网络实现手写数字识别matlab实现\AfterAppr_6.bmp

BP神经网络实现手写数字识别matlab实现\AfterAppr_7.bmp

BP神经网络实现手写数字识别matlab实现\AfterAppr_8.bmp

BP神经网络实现手写数字识别matlab实现\AfterAppr_9.bmp

BP神经网络实现手写数字识别matlab实现\AfterRec_0.bmp

BP神经网络实现手写数字识别matlab实现\AfterRec_1.bmp

BP神经网络实现手写数字识别matlab实现\AfterRec_2.bmp

BP神经网络实现手写数字识别matlab实现\AfterRec_3.bmp

BP神经网络实现手写数字识别matlab实现\AfterRec_4.bmp

BP神经网络实现手写数字识别matlab实现\AfterRec_5.bmp

BP神经网络实现手写数字识别matlab实现\AfterRec_6.bmp

BP神经网络实现手写数字识别matlab实现\AfterRec_7.bmp

BP神经网络实现手写数字识别matlab实现\AfterRec_8.bmp

BP神经网络实现手写数字识别matlab实现\AfterRec_9.bmp

BP神经网络实现手写数字识别matlab实现\Build.asv

BP神经网络实现手写数字识别matlab实现\Build.m

BP神经网络实现手写数字识别matlab实现\E52PT.mat

BP神经网络实现手写数字识别matlab实现\E52net 100-100 100000.mat

BP神经网络实现手写数字识别matlab实现\E52net.mat

BP神经网络实现手写数字识别matlab实现\Fisher.m

BP神经网络实现手写数字识别matlab实现\FisherClassifier.asv

BP神经网络实现手写数字识别matlab实现\FisherClassifier.m

BP神经网络实现手写数字识别matlab实现\Main.m

BP神经网络实现手写数字识别matlab实现\NewAppr_0.bmp

BP神经网络实现手写数字识别matlab实现\NewAppr_1.bmp

BP神经网络实现手写数字识别matlab实现\NewAppr_2.bmp

BP神经网络实现手写数字识别matlab实现\NewAppr_3.bmp

BP神经网络实现手写数字识别matlab实现\NewAppr_4.bmp

BP神经网络实现手写数字识别matlab实现\NewAppr_5.bmp

BP神经网络实现手写数字识别matlab实现\NewAppr_6.bmp

BP神经网络实现手写数字识别matlab实现\NewAppr_7.bmp

BP神经网络实现手写数字识别matlab实现\NewAppr_8.bmp

BP神经网络实现手写数字识别matlab实现\NewAppr_9.bmp

BP神经网络实现手写数字识别matlab实现\NewRec_0.bmp

BP神经网络实现手写数字识别matlab实现\NewRec_1.bmp

BP神经网络实现手写数字识别matlab实现\NewRec_2.bmp

BP神经网络实现手写数字识别matlab实现\NewRec_3.bmp

BP神经网络实现手写数字识别matlab实现\NewRec_4.bmp

BP神经网络实现手写数字识别matlab实现\NewRec_5.bmp

BP神经网络实现手写数字识别matlab实现\NewRec_6.bmp

BP神经网络实现手写数字识别matlab实现\NewRec_7.bmp

BP神经网络实现手写数字识别matlab实现\NewRec_8.bmp

BP神经网络实现手写数字识别matlab实现\NewRec_9.bmp

BP神经网络实现手写数字识别matlab实现\Recognize.m

BP神经网络实现手写数字识别matlab实现\Untitled3.asv

BP神经网络实现手写数字识别matlab实现\Untitled3.m

BP神经网络实现手写数字识别matlab实现\Vec.asv

BP神经网络实现手写数字识别matlab实现\Vec.m

BP神经网络实现手写数字识别matlab实现\appr_0.bmp

BP神经网络实现手写数字识别matlab实现\appr_1.bmp

BP神经网络实现手写数字识别matlab实现\appr_2.bmp

BP神经网络实现手写数字识别matlab实现\appr_3.bmp

BP神经网络实现手写数字识别matlab实现\appr_4.bmp

BP神经网络实现手写数字识别matlab实现\appr_5.bmp

BP神经网络实现手写数字识别matlab实现\appr_6.bmp

BP神经网络实现手写数字识别matlab实现\appr_7.bmp

BP神经网络实现手写数字识别matlab实现\appr_8.bmp

BP神经网络实现手写数字识别matlab实现\appr_9.bmp

BP神经网络实现手写数字识别matlab实现\es.asv

BP神经网络实现手写数字识别matlab实现\es.m

BP神经网络实现手写数字识别matlab实现\getFeature.asv

BP神经网络实现手写数字识别matlab实现\getFeature.m

BP神经网络实现手写数字识别matlab实现\met.asv

BP神经网络实现手写数字识别matlab实现\met.m

BP神经网络实现手写数字识别matlab实现\net.mat

BP神经网络实现手写数字识别matlab实现\net100-100 1000000.mat

BP神经网络实现手写数字识别matlab实现\net5-5.mat

BP神经网络实现手写数字识别matlab实现\rec_0.bmp

BP神经网络实现手写数字识别matlab实现\rec_1.bmp

BP神经网络实现手写数字识别matlab实现\rec_2.bmp

BP神经网络实现手写数字识别matlab实现\rec_3.bmp

BP神经网络实现手写数字识别matlab实现\rec_4.bmp

BP神经网络实现手写数字识别matlab实现\rec_5.bmp

BP神经网络实现手写数字识别matlab实现\rec_6.bmp

BP神经网络实现手写数字识别matlab实现\rec_7.bmp

BP神经网络实现手写数字识别matlab实现\rec_8.bmp

BP神经网络实现手写数字识别matlab实现\rec_9.bmp

BP神经网络实现手写数字识别matlab实现\training.m

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是一个简单的基于matlab实现BP神经网络汉字识别的代码示例: ```matlab % 数据预处理 load('handwritten_chinese.mat'); % 加载汉字数据集 X = double(reshape(dataset, [], 1024)') / 255; % 将数据集转换为数字矩阵 y = double(repmat(eye(3755), 141, 1)); % 构造标签矩阵 % 数据集划分 train_x = X(1:8000, :); train_y = y(1:8000, :); val_x = X(8001:9000, :); val_y = y(8001:9000, :); test_x = X(9001:end, :); test_y = y(9001:end, :); % BP神经网络搭建 net = patternnet([100, 50]); % 构造两层中间层,分别有100和50个节点 net.divideFcn = 'divideind'; % 使用自定义划分函数 net.divideParam.trainInd = 1:8000; net.divideParam.valInd = 8001:9000; net.divideParam.testInd = 9001:size(X, 1); net.layers{1}.transferFcn = 'logsig'; % 设置激活函数为logsig net.layers{2}.transferFcn = 'logsig'; net.trainFcn = 'traingdx'; % 设置训练算法为traingdx net.trainParam.epochs = 100; % 设置最大训练轮数为100 net.trainParam.lr = 0.1; % 设置学习率为0.1 net.trainParam.goal = 0.1; % 设置最小误差为0.1 % 网络训练 [net, tr] = train(net, train_x', train_y'); % 验证网络 val_y_pred = net(val_x'); val_acc = sum(vec2ind(val_y_pred) == vec2ind(val_y')) / length(val_y); % 测试网络 test_y_pred = net(test_x'); test_acc = sum(vec2ind(test_y_pred) == vec2ind(test_y')) / length(test_y); % 应用网络 img = imread('test_image.png'); % 加载测试图片 img = imresize(img, [32, 32]); % 调整图片大小为32x32 img = rgb2gray(img); % 将图片转换为灰度图 img = double(reshape(img, 1, [])) / 255; % 将图片转换为数字矩阵 pred = net(img'); % 预测图片所属汉字种类 ``` 需要注意的是,以上代码示例仅是一个简单的BP神经网络汉字识别实现,实际应用需要根据具体情况进行调整和扩展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值