二维 均值方差高斯分布图 python_深入浅出多维高斯分布的最大似然估计矩阵推导...

之前搞特征分析时,对一个样本矩阵

求协方差矩阵,在
中行表示样本数,列表示特征数。直接套协方差的公式:
。对于这个公式什么来的,我当时没有具体去推导过。今天就从矩阵的角度推导一下(好像这样说不太严谨,欢迎批评指正)。

首先给出多元高斯分布的公式:

其中

定义关于参数

的似然函数为:

为了方便计算,我们对公式(2)两边取自然对数,得到:

将公式(1)代入公式(3),并利用对数的性质,将乘法展开成加法,得到:

OK,到此为止,我们的准备工作完成了,下面分别对

求导。

这里贴出三条求导法则:

(1)

,若A是对称矩阵,则

(2)

,来自微分形式

(3)

,可由
推导得到。

1.对

求偏导数

这里套用法则(1),可得:

注意,公式(5)套用了链式求导法则,即:

注意,按照协方差矩阵的定义,协方差矩阵是一个对称矩阵,它的逆矩阵也是对称的。

,可得到:

2.对

求偏导数

这里运用矩阵微分来做,可得:

根据矩阵微分与导数的关系:

,可得:

注意,公式(8)的推导用到了

是对称矩阵的事实。

,整理可得到:

OK,对比文章开始的协方差矩阵公式

,好像和公式(9)不太一样?其实公式(9)首先对每个样本做了中心化处理,即:
。我们仔细观察一下公式(9)的求和项
。为方便理解,假如
刚好是0,那么不就是
了吗,这个是一个
矩阵,每个样本都对应这样一个矩阵,将它们相加起来再除以样本数就是协方差矩阵了。

所以可以看到原文开始的公式

只是少了中心化和除以样本数而已。

3.验证

我们在Python中验证上面的结论是否正确

import 

运行结果截图:

d87cddcd5803ab0749ac8d983417d463.png

可见,输出为True,所以得到验证。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值