powerdesigner关系图连线_如何求解这个小球碰撞次数与圆周率关系的趣味问题?...

72fddd1dc8fa793e9a70e5e861b5cedc.png

如图,在光滑水平面上,有一个球A向墙运动,速度垂直于墙面,A和墙之间的连线上停着另一个小球B。假设球与球,球与墙之间的碰撞均为完全弹性的。这个图画的并不好,两个球大小完全一致可以看成质点。

9028b51f3eb6573f2b8882ff70c86076.png

当两个球质量相等时,A碰上B,A停下来B继续运动,B碰到墙再返回碰A。球与球、球与墙之间一共发生了3次碰撞。
如果球A的质量大于B,那么A碰完B之后还会继续向墙运动,总共的碰撞次数可能会大于3。实际上:
当A的质量是B的10000倍时,共碰撞314次。
当A的质量是B的1000000倍时,共碰撞3141次。
当A的质量是B的1亿倍时,共碰撞31415次。
随着A和B质量之比的增大,总共的碰撞次数会和圆周率的数值有关。如何解释这个关系?
Mathematics Stack Exchange 上讨论问题的链接physics - Intuitive reasoning behind $pi$'s appearance in bouncing balls.

根据球体弹性碰撞模拟球体弹性动力学解和动应力集中,碰撞过程合理建模为动量作用对球体有限元质点的量子填充如下图:

7a7518f300b4ebd42049c1c48fed7f9c.png
图1.动量切面对于弹性球弹性质点的“条形覆盖”

球体碰撞,完全弹性,动量守恒,球内分布质量点完全弹性质量守恒,全方位碰撞,弹性,数学建模为动量对于球体的质量点填充,或作用切面对于球体的动量"条形覆盖",图1切面

685b60c7e759e872bf2414b3ee68874f.png
图2.切面L-wall

条带宽姜子麟证明

曲率相等相当于平面覆盖平面,
等于立方体表体比,系统动量守恒条件下动量圆
径向作用
换算为径向碰撞次数 (动量圆弧径向展开,周期

7c4769daed14f2779717829e8d37fba2.png

,质量比曲率比反相关,从正六面体到大于6的正多面体到趋近球体,AB质量相等到A的质量是B的
倍,总共的碰撞次数从
逐渐趋向于
.“最短网络”下的“最大密度”,斯坦纳比计算公式st(i)=sin(iV):量子“填充”力学 - 知乎
注销:“最短网络”下的“最大密度”,斯坦纳比计算公式st(i)=sin(iV):量子“填充”力学​zhuanlan.zhihu.com

对于一个单位球,可以将它切割有限份,通过对每份进行旋转平移,可以将它拼成两个单位球,对两个单位球作类似切割,可以得到2n个单位球,把它们随机抛到绝对光滑平面,建模为平面对于球体的条形覆盖,平面,2n个小球,斯坦纳比

dd1ba1d9db19c1889524ee0c0c046e9d.png

条形覆盖猜想,单位“面积直径”的球体表面条带宽——

ae43f7955df3858d81e013d6b8941e3c.png

c2b45f745c4a99ff0ed7497bdf643b31.png

0b73d447d363576ba7d6398ca9c26f3c.png

1f71b1146b9acd54ac6c609178cd99b9.png

6c44c402ffcb0db1a7138a5d5f4543e5.png

4e1aa57edbbaf942cba2433683cbb529.png

3de5ff273097fab8f50345b66e10d9f7.png

71433e257090922d0ebb615b3ee88503.png

5abef383baa5cf4b0baaba936d54d95a.png

289af6ea3a67138a278f63d5f3124969.png

363550539b8a85e5bd22585d1e6d3f6e.png

a55bec266bc6ac1ab2b1a2586d13c4e4.png
条带宽限线测量极值的形成

69e7193b447d514aff8805db79f31ad7.png

52dc420be19792f5d84122016578632c.png

92921b71eb87e946929d53e948f4b6d5.png

半球,特殊圆柱,宽度展开,最大值相等

fe17fb1df517eb560c17bab9589f0443.png

dbea8f19afd5d90a60e7042427dace7a.png

7d1a36a4d030bb14241bb10551037ca0.png

a0089a78b83aae564b17c492a2c19362.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值