如图,在光滑水平面上,有一个球A向墙运动,速度垂直于墙面,A和墙之间的连线上停着另一个小球B。假设球与球,球与墙之间的碰撞均为完全弹性的。这个图画的并不好,两个球大小完全一致可以看成质点。
当两个球质量相等时,A碰上B,A停下来B继续运动,B碰到墙再返回碰A。球与球、球与墙之间一共发生了3次碰撞。
如果球A的质量大于B,那么A碰完B之后还会继续向墙运动,总共的碰撞次数可能会大于3。实际上:
当A的质量是B的10000倍时,共碰撞314次。
当A的质量是B的1000000倍时,共碰撞3141次。
当A的质量是B的1亿倍时,共碰撞31415次。
随着A和B质量之比的增大,总共的碰撞次数会和圆周率的数值有关。如何解释这个关系?
Mathematics Stack Exchange 上讨论问题的链接physics - Intuitive reasoning behind $pi$'s appearance in bouncing balls.
根据球体弹性碰撞模拟球体弹性动力学解和动应力集中,碰撞过程合理建模为动量作用对球体有限元质点的量子填充如下图:
球体碰撞,完全弹性,动量守恒,球内分布质量点完全弹性质量守恒,全方位碰撞,弹性,数学建模为动量对于球体的质量点填充,或作用切面对于球体的动量"条形覆盖",图1切面
条带宽姜子麟证明
对于一个单位球,可以将它切割有限份,通过对每份进行旋转平移,可以将它拼成两个单位球,对两个单位球作类似切割,可以得到2n个单位球,把它们随机抛到绝对光滑平面,建模为平面对于球体的条形覆盖,平面,2n个小球,斯坦纳比
条形覆盖猜想,单位“面积直径”的球体表面条带宽——
半球,特殊圆柱,宽度展开,最大值相等