lstm结构图_带你深入了解TensorFlow框架下的LSTM时间序列预测

本文深入探讨了使用TensorFlow进行时间序列预测,特别是LSTM模型的应用。通过单变量和多变量时间序列预测案例,展示了如何构建、训练和评估LSTM模型,并得到了较好的预测效果。
摘要由CSDN通过智能技术生成
cae206a60014c5bb627a1c7207329f0f.gif

点击上方蓝字关注我们

cae206a60014c5bb627a1c7207329f0f.gif

前言

2acdd2b38fed3de797cb0dd27e3ec463.gif 现实生活中,我们经常会遇到各式各样的时间序列预测场景,比如、股票和黄金价格的预测商品销量的预测等等。TensorFlowTime Series(以下简称TFTS)专门设计了一套针对时间序列预测问题的API,利用其提供的LSTM模型,可以实现在TensorFlow中快速搭建高性能时间序列预测系统。LSTM具有优于传统神经网络框架的优势。虽然用TensorFlow与LSTM结合来做时间序列预测是一个很旧的话题,然而却一直没有得到比较好的解决或分析。本文结合实例代码带你从零开始轻松搭建TensorFlow深度学习框架下LSTM高性能时间序列预测系统。 b7b1c7d08980b6d3ae4dc34dcc58760b.gif重组病毒载体疫苗是什么 基本知识

    所谓的时间序列预测是指在某些未来时间点预测数据的值的多少。时间序列预测主要基于连续性原理。在现实生活中,大多数事物的基本发展趋势将在未来继续,其产生的数据也将满足时间序列的连续性原则。所以在实际应用中,时间序列预测具有较强的实用性。预测效果与预测模型的选择密不可分。

TensorFlow简介

    TensorFlow是一种基于图的计算框架。正如TensorFlow本身所表示含义。Tensor表示张量,是TensorFlow的核心数据单位,其本质是一个任意维的数组。Flow(流)表示基于数据流图的计算,构建执行流图是TensorFlow开发过程中的重点。它表示的是张量从流图的一端流动到另一端计算过程,正是这种基于流的架构让它具有了更高的灵活性。TensorFlow系统架构如下图所示。

922b760f154d8903b96fe69b4d85a458.png

TensorFlow系统架构

LSTM网络

    LSTM(LongShort-Term Memory)是传统递归神经网络RNN(Recurrent Neural Networks)改良后的成果,是一款长短期记忆网络。它是由Ho⁃chreiter和Schmidhuber在1997年提出的。相较于普通的RNN,LSTM增加了一个记忆单元(cell)用于判断信息有用与否,解决了长序列训练过程中的梯度消失和梯度爆炸问题。这一改进使得其能在更长的序列中有更好的表现。

    记忆单元的状态(cellstate)是LSTM的关键,为了保护和控制记忆单元的状态,一个记忆单元中被放置了三个控制门,分别叫做输入门、遗忘门和输出门。每个控制门由一个包含一个sigmoid函数的神经网络层和一个点乘操作组成。LSTM记忆单元的结构图如下图所示。图中从左方的输入d490a9c777ea89117d7dd1dc83b9f7f1.png到右方的输出f2d8a53cd0bd12b089c18a6ad5e71c81.png的一条贯穿示意图顶部的水平线即为记忆单元的状态。遗忘门、输入门、输出门的神经网络层均用a2bef379e7b3cf3c058f4113c4ecb1e1.png层表示,其输出结果分别由b3a028c0f2f209757cd507e0e17b1803.png03400b66aabfec331e3774b840449625.pngb1f988ac79e8a3a9a68acd45c805f1a7.png表示。图中的两个

CNN-BiLSTM-Attention模型是一个结合了卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和注意力机制(Attention)的深度学习模型,通常用于处理序列数据,特别是在自然语言处理(NLP)和图像识别领域有广泛应用。在图片预测任务中,这个模型可以通过以下方式结合使用: 1. **卷积神经网络(CNN)**:CNN是处理图像数据的常用架构,它能够从图像中提取空间层次的特征。在图片预测任务中,CNN可以用来提取图片的局部特征,如边缘、纹理等。 2. **双向长短期记忆网络(BiLSTM)**:BiLSTM是一种能够处理序列数据的递归神经网络(RNN),它能够捕捉序列数据的时间依赖性。在图像预测中,BiLSTM可以用来处理一维的特征序列,例如按行或列扫描图像得到的特征序列。 3. **注意力机制(Attention)**:注意力机制允许模型在处理输入序列时,对不同部分的输入赋予不同的权重,从而更关注于重要的信息。在图片预测中,注意力机制有助于模型集中处理图像中的关键区域。 将这三个组件结合在一起,可以构建一个强大的模型来执行图像预测任务。首先,CNN负责提取图像特征,然后BiLSTM处理这些特征的序列,最后通过注意力机制模型能够聚焦于图像中的关键区域。 使用Python进行开发时,常见的深度学习框架TensorFlow和Keras提供了构建此类模型所需的组件和接口。以下是一个简化的实现示例: ```python from keras.models import Model from keras.layers import Input, Conv2D, MaxPooling2D, Reshape, Dense, LSTM, Bidirectional, Concatenate, Attention # 假设输入图像大小为224x224x3 input_img = Input(shape=(224, 224, 3)) # CNN部分 conv1 = Conv2D(64, (3, 3), activation='relu', padding='same')(input_img) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = Conv2D(128, (3, 3), activation='relu', padding='same')(pool1) pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) # 将CNN的输出转换为适合RNN处理的形状 reshaped = Reshape(target_shape=((224//4)*(224//4), 128))(pool2) # BiLSTM部分 blstm = Bidirectional(LSTM(64, return_sequences=True))(reshaped) # 注意力机制部分 attention = Attention()([blstm, blstm]) # 全连接层和输出层 dense = Dense(64, activation='relu')(attention) output = Dense(1, activation='sigmoid')(dense) # 构建模型 model = Model(inputs=input_img, outputs=output) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # 模型概览 model.summary() # 训练模型等步骤... ``` 请注意,上述代码仅为示例,实际应用中需要根据具体任务对模型结构和参数进行调整,例如在图像的大小、卷积层和全连接层的神经元数量等方面。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值