1.2.3.4.5.
1. 2. 3. 4. 5.
1. 2.ISAPCI 3.RS232
1. 2. 3. 4.
1
2 1Differential Thermal Analysis DTA 2Differential Scanning Calorimetry DSC 3Thermogra Vimetric Analysis TGA 4Thermomechanic Analysis TMA 5Cooling Curve Analysis CCACACCAcomputer-aided cooling curve analysis
3 60
1.
1 T>1357 T= 1357 1153
2 T>1260 T= 12601 1153
3 T>1153 T 1153 100
Si, Mn, P, S
Adaptive Thermal Analysis SystemMetallurgical Process Control forGray and Ductile Iron
Derivative and Calorimetric Thermal Analysis combined with Applied Artificial Intelligence
Developed by NovaCast AB in cooperation withSwedish Foundry Association
Process Control?Are you a blind foundryman?Day 1: C = 3,4 % Si = 2,1 % , 1380 C Scrap rate = 2,0 %.All measured data OK!Day 2: C = 3,4 % Si = 2,1 % , 1380 C Scrap rate = 12,0 % All measured data OK! The problem is that essential data are not measured and knowledge is lacking. The foundryman can not see what he should see!
Factors influencing Metallurgical QualityChemical compositionCharge materials and composition (Combined & Free C)Charging sequence and temperature / time ratiosIron handling and treatment practicePouring temperature and inoculation practice Presence and amount of reaction products Thermal properties of alloy, mould and core(s)Mould / Core hardness / WeightingMethoding (gating, feeding, feeding paths, etc.)Shake-out timeIt is understandable that the properties vary between melts.
Why chemistry is not enoughSpectrometer only shows amount per element!No info about compounds! No info about nucleation properties!No info about graphite precipitation!Tramp elements often not analysedAre spectrometer readings reliable? C, SiThe purpose of ATAS is to open a new window into the metallurgical process. Melts with identical chemistry can behave completely different when poured! It is the combination of advanced thermal analysis and chemistry that makes efficient process control possible.
Metallurgy Related Problems Macro- and micro shrinkages, porosity Chill and intercellular carbidesGraphite shape and matrixExpansion penetrationCertain slag and gas-related defectsFluidity, castabilityStrength, hardness, machinabilityNodularity, Nodule CountAbout 40% of all scrap has metallurgical causes!
Ideal Metallurgical Process ControlMeasure essential metallurgical parametersInterpret actual data Predict final resultsLearn from experienceAdjust according to suggested correctionsAdvisory system increases knowledgeIncreased awareness / Tutorial ATAS is designed to fulfill these requirements
The Metallurgical fingerprint Each melt is an individual. The cooling curve can be regarded as its thermodynamic fingerprint.
Economical ConsequencesAssume:Yearly production of 10.000 tonsScrap reduction: $ 10 to 20 / percent / tonnageReduction, 1%, saving :$ 150.000
Yield improvement: $ 2-4 / percent / tonnageImproving, 65% to 67%, saving: $ 60.000
Reduced consumption of inoculant and Mg-alloy5% reduction, saving of at least: $ 50.000
Total net savings approx: $ 25 per ton.Plus reduced cost for sampling, plus higher customer satisfaction etc
Yearly savings: $ 250.000
$
2.
1. 1 2 3 401300 01600
1 E32.072mv 30E 1.203mv,E33.275mv T8002 3
2. A/D1 / a) b) 2 A/D a) ISAPCI b c
3.123
1
1 1961Humphreys CELTL1669124CEL CEL13.460.00806TL CELCSi/4P/2 CE CSi/3P/3 1964Moore CEL13.420.00806TL CEL14.450.0089TL 20074 CEL13.140.0078TL CELABTL AB
2CSi CAB TL CTeu Si%AB TL CTeu C0.0178Teu0.0084TL6.51 Si%78.4110.06831Teu1
CEL13.14-0.0078TL-0.93250.0261CE13.55-0.0080TL-0.92870.0276C%17.70-0.00643TL-0.00593Teu0.94050.0231Si%24.64-0.02036Teu-0.68740.0306Si%23.13-0.000403TL-0.01858Teu0.68980.0315
23
CEL12.60-0.0074TL-0.94170.0243CE12.99-0.0076TL-0.93750.0259C%17.31-0.00777TL-0.00414Teu0.95190.0208Si%21.02-0.00519TL-0.01145Teu0.67870.0319
CEL13.21-0.00716TL-0.00069Tmax0.95960.0209CE13.614-0.00736TL-0.000704Tmax0.95510.0228C%18.43-0.00763TL-0.00452TS-0.000664Tmax0.97160.0166Si25.46-0.00551TL-0.01494TS-0.0159TR0.73830.0303
3SC3.674-0.0023TLSC>1,SC1SC
4 D27DT1/DTE262
3 DT1/DTE
5